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Abstract: Images and text inherently exhibit hierarchical structures, e.g. scenes built from
objects, sentences built from words. In many computer vision and natural language processing
tasks, learning accurate prediction models requires analyzing the correlation of the local prim-
itives of both the input and output data. In this proposal, we aim to develop techniques for
learning local representations of images and text and demonstrate their effectiveness on visual
recognition, retrieval, and synthesis. In particular, the proposal includes three primary research
projects: (1) Text2Scene, a sequence-to-sequence image synthesis framework which produces
a scene depicted in a textual description by sequentially predicting objects, their locations,
and their attributes such as sizes, aspect ratios. (2) DrillDown, an interactive image retrieval
model which encodes multiple rounds of natural language queries with a region-aware state
representation. (3) A newly proposed project which explores the task of instance-level image
recognition/retrieval. The key ingredient of this work is a transformer based model that learns
the visual similarity of an image-pair by incorporating both the global and local features of the
images.



Contents

1 Introduction 2
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Local Representations in Vision and Language . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Learning to Generate Compositional Scene Representations from Text 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Text2Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Learning to Retrieve Complex Scenes with Region-aware Representations 7
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Drill-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Learning Visual Similarity of Images using Global and Local Descriptors 12
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Research Plan 15



1 Introduction

1.1 Overview

Learning expressive representations of images and text is a core problem in computer vision
and natural language processing. Depending on the desired outputs of the specific tasks, the
representation may take on different forms. For category-level recognition, existing algorithms
tend to represent the input data with global vector embeddings or discrete codes. However,
these compact features are sub-optimal for “rich” prediction problems of which the outputs are
beyond symbolic information. For example, prior approaches [70, 100] for the text-to-image
synthesis task encode the input text description as a single vector, and leverage conditional
Generative Adversarial Networks (GANs) [24] to perform pixel-wise image synthesis. While
these works have managed to generate results of increasing quality, there are major challenges
when attempting to synthesize images for complex scenes with multiple interacting objects. As
another example, traditional image retrieval models [7, 68] make use of global descriptors of the
images to perform nearest neighbor search in large-scale databases. Despite their simplicity,
global descriptors discard the spatial arrangement of visual elements, which hinders them from
learning patch-level matches between images.

Figure 1: Local primitives of images and text. Complex linguistic expressions can be modeled
as the composition of words. Complex visual scenes can be modeled as the composition of key
points or segments

One feature shared by the visual and textual data is the capacity of representing com-
plex concepts using a hierarchy of local primitives. As shown in Fig. 1, both images and text
can be represented by various forms of constituent elements, e.g. characters/words for text,
points/segments for images. In this work, we explore the representations of the local concepts
in visual and textual data. We are particularly interested in rich visual prediction tasks that go
beyond traditional image classification in the sense that the input and output data comprises
fine-grained structures. My completed research demonstrates that modeling the local compo-
nents of the input and output data and their interactions is crucial for reliable predictions in
these tasks.

We discuss three primary research projects in this proposal: (1) Text2Scene, a sequence-to-
sequence model that generates various forms of compositional scene representations from natural
language descriptions. Unlike recent works for text-to-image synthesis, Text2Scene does not use
Generative Adversarial Networks (GANs), but instead learns to sequentially generate objects
and their attributes (location, size, appearance, etc) at every time step by attending to different
parts of the input text and the current status of the generated scene. This work was published
in CVPR 2019 [86]; (2) Drill-down, which explores the task of interactive image retrieval us-
ing natural language queries, where a user progressively provides input queries to refine a set
of retrieval results. It supports the retrieval of complex image scenes with multiple objects
by integrating multiple queries with a region-aware state representation that significantly ex-
tends previous methods for single-round image retrieval. This work was published in NeurIPS
2019 [85]; (3) A newly proposed project that studies the problem of instance-level image recog-
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nition/retrieval where the goal is searching in a large database for images that match an specific
object/scene instance in a query image. To address this task, systems usually rely on a retrieval
step that uses global image features, and a subsequent step that performs domain-specific re-
finements or reranking by leveraging operations such as geometric verification based on local
features. We propose Reranking Transformers (RRTs) as a general model to incorporate both
global and keypoint based features to learn the matching images in a supervised fashion.

1.2 Local Representations in Vision and Language

Local features has been one of the most common visual representations in computer vision.
Much of the progress for visual recognition before the “deep learning revolution” has built on
local, or keypoint-based descriptors such as SIFT [53] and HOG [17]. Compared to global
signatures [62], these descriptors are believed to be more invariant to image changes such as
illumination, translation, occlusion and truncation. They were used in a wide variety of visual
prediction tasks such as texture recognition [47], scene recognition [45], image matching [34],
3D reconstruction [1], etc. Part-based features [75, 99] were later introduced to model semantic
visual concepts, e.g. classes, attributes, and relations. They were typically used in combi-
nation with statistical models for both pure visual recognition tasks and vision-and-language
tasks. Famous examples include the Deformable Part Model [23] for object detection and the
BabyTalk [43] system for image captioning. With the advent of deep learning, local repre-
sentations extracted from Convolutional Neural Networks continue to play an important role
in building high quality visual prediction models. Both grid-based [33] and region-based [3]
features have shown promising performance on various vision-and-language tasks, e.g. image
captioning [94], visual question answering [4], referring expression grounding [37], etc.

Compositional (part-based) representations have also been widely studied in linguistics and
adjacent fields. Early systems [58, 80] explore incorporating explicit composition operations into
vector-based systems. More recent approaches focus on learning distributed representations of
natural language from large text corpora. Word2Vec [57] and GloVe [65] proposed to model the
co-occurrence of words in both local and global contexts, while Socher et al [81] developed a
unified framework to learn the hierarchy of words, phrases, and sentences using recursive neural
networks. As a recent breakthrough in natural language processing, the Transformer [56] model
learned contextualized text representations using a novel attention based sequence encoder.

1.3 Contributions

This proposal presents my completed research on learning local representations of images and
text for visual synthesis/retrieval. It also introduces an on-going project tackling instance-level
image recognition/retrieval by learning the correlation of the global and local representations
extracted from an image-pair. The potential contributions made in this proposal include

• We develop an end-to-end trainable approach based on a sequence-to-sequence model
to generate various forms of scene representations (e.g. abstract scenes, object layouts,
composite images) from visually descriptive language. (Chapter 2)

• We present an effective framework for interactive retrieval of specific images of complex
scenes. The method explores in depth and addresses several challenges in multiple round
retrievals with natural language queries such as the need for region-aware features. (Chap-
ter 3)

• We propose a novel model which learns to predict the visual similarity of an image-pair
by analysing the correlation of both the global and keypoint-based representations using a
transformer architecture. Preliminary results demonstrate its effectiveness in the context
of reranking image search results. (Chapter 4)
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2 Learning to Generate Compositional Scene Representations
from Text

2.1 Introduction

As the first project in this thesis proposal, we introduce Text2Scene, a model to interpret
visually descriptive language in order to generate compositional scene representations. We

Figure 2: Sample inputs (left) and outputs
of our Text2Scene model (middle), along with
ground truth reference scenes (right) for the gen-
eration of abstract scenes (top), object layouts
(middle), and synthetic image composites (bot-
tom).

specifically focus on generating a scene rep-
resentation consisting of a list of objects,
along with their attributes (e.g. location,
size, aspect ratio, pose, appearance). We
adapt and train models to generate three
types of scenes as shown in Figure 2, (1)
Cartoon-like scenes as depicted in the Ab-
stract Scenes dataset [102], (2) Object lay-
outs corresponding to image scenes from
the COCO dataset [51], and (3) Synthetic
scenes corresponding to images in the COCO
dataset [51]. Our method, unlike recent ap-
proaches, does not rely on Generative Adver-
sarial Networks (GANs) [24]. Instead, we pro-
duce an interpretable model that iteratively
generates a scene by predicting and adding
new objects at each time step.

2.2 Related Work

Recent research on text-to-image synthe-
sis [32, 35, 70, 71, 96, 100, 101] mainly leverage
conditional Generative Adversarial Networks
(GANs) [24]. While these works have man-
aged to generate results of increasing quality,
there are major challenges when attempting to synthesize images for complex scenes with mul-
tiple interacting objects without explicitly defining such interactions [97]. Most closely related
to our approach are [27, 32, 35], and [39], as these works also attempt to predict explicit 2D
layout representations. Johnson et al [35] proposed a graph-convolutional model to generate
images from structured scene graphs. The presented objects and their relationships were pro-
vided as inputs in the scene graphs, while in our work, the presence of objects is inferred from
text. Hong et al [32] targeted image synthesis using conditional GANs but unlike prior works,
it generated layouts as intermediate representations in a separably trained module. Our work
also attempts to predict layouts for photographic image synthesis but unlike [32], we generate
pixel-level outputs using a semi-parametric retrieval module without adversarial training and
demonstrate superior results. Kim et al [39] performed pictorial generation from chat logs,
while our work uses text which is considerably more underspecified. Gupta et al [27] proposed
a semi-parametric method to generate cartoon-like pictures. However the presented objects
were also provided as inputs to the model, and the predictions of layouts, foregrounds and
backgrounds were performed by separably trained modules. Our method is trained end-to-end
and goes beyond cartoon-like scenes. To the best of our knowledge, our model is the first work
targeting various types of scenes (e.g. abstract scenes, semantic layouts and composite images)
under a unified framework.
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Figure 3: Overview of Text2Scene. Our general framework consists of (A) a Text Encoder
that produces a sequential representation of the input, (B) an Image Encoder that encodes
the current state of the generated scene, (C) a Convolutional Recurrent Module that tracks,
for each spatial location, the history of what have been generated so far, (D-F) two attention-
based predictors that sequentially focus on different parts of the input text, first to decide what
object to place, then to decide what attributes to be assigned to the object, and (G) an optional
foreground embedding step that learns an appearance vector for patch retrieval in the synthetic
image generation task.

2.3 Text2Scene

Fig 3 provides an overview of the Text2Scene model. It consists of a text encoder (Fig 3 (A))
that maps the input sentence to a set of latent representations, an image encoder (Fig 3 (B))
which encodes the current generated canvas, a convolutional recurrent module (Fig 3 (C)),
which passes the current state to the next step, attention modules (Fig 3 (D)) which focus on
different parts of the input text, an object decoder (Fig 3 (E)) that predicts the next object
conditioned on the current scene state and attended input text, and an attribute decoder (Fig 3
(F)) that assigns attributes to the predicted object.

The text encoder is a bidirectional recurrent network with Gated Recurrent Units (GRUs),
which produces the feature embedding of each word in a given sentence. In the meantime,
we use a convolutional network (CNN) to encode the current canvas into a 2D feature map,
representing the current scene state. At each step, our model predicts the next object and its
attributes from predefined object/attributes vocabularies using the concatenation of the text
and scene features as input. For this part, we leverage a convolutional GRU (ConvGRU) to
model the history of the scene states. The initial hidden state is created by spatially replicating
the last hidden state of the text encoder.

With this 2D scene state, we first predict the next object that is depicted in the input text
but missing in the current canvas. In doing this, our model predicts a 2D attention map which
is used to reduce the scene state into a single vector. This vector summarizes the spatial context
in the scene state where the next object may appear. We develop a text-based attention model
to use this vector as the query to attend to the word features from the text encoder. The object
is predicted by a simple perceptron model which takes the attended text feature as input.

The attribute set corresponding to the object can be predicted similarly. For each spatial
location in the 2D scene state, the model predicts a location likelihood, and a set of attribute
likelihoods using another attention module similar as in the object decoder. We predict a
particular attribute: an appearance vector, only for the model trained to generate synthetic
image composites (i.e. images composed of patches retrieved from other images). As with other
attributes, the appearance vector is predicted for every location in the scene state which is used
at test time to retrieve similar patches from a precomputed collection of object segments from
other images.
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2.4 Experiments

We perform experiments on three text-to-scene tasks:

Task (I): Clip-art Generation on Abstract Scenes. The Abstract Scene dataset is intro-
duced by [102]. It comprises pictorial scenes of clip-art objects. The attributes we consider for
each clip-art object are the location, size , and the direction the object is facing. For the person
objects, we also explicitly model the pose and expression.

Task (II): Semantic Layout Generation on COCO. In this experiment, we make use of
the captions and bounding box annotations provided by the COCO [51] dataset to define the
semantic layout of a scene. The attributes we consider are location, size, and aspect ratio.

Task (III): Synthetic Image Generation on COCO. We also demonstrate our approach
by generating synthetic image composites given input captions in COCO [51]. In addition to
the semantic layout as in Task (II), our model also predicts appearance vectors which are used
to retrieve object/stuff segments provided by the COCO [51] and COCO-Stuff [31] datasets.

Automatic Metrics. Our tasks pose new challenges on evaluating the models. For the
abstract scene generation task, we draw inspiration from the evaluation metrics applied in
machine translation [44] and propose to compute the following metrics: precision/recall on single
objects (U-obj), “bigram” object pairs (B-obj); classification accuracies for poses, expressions;
Euclidean distances (defined as a Gaussian function with a kernel size of 0.2) for normalized
coordinates of U-obj and B-obj. A “bigram” object pair is defined as a pair of objects with
overlapping bounding boxes. The method is evaluated against [102] and variants of our full
model, such as Text2Scene (w/o attention), a model without any attention module. In the
layout generation experiment, it is harder to define evaluation metrics given the complexity
of real world object layouts. Inspired by [32], we employ caption generation as an extrinsic
evaluation. We generate captions from the semantic layouts using [98] and compare them back to
the original captions used to generate the scenes. We use commonly used metrics for captioning
such as BLEU [63], METEOR [8], ROUGE L [50], CIDEr [91] and SPICE [2]. For synthetic
image generation, we adopt the Inception Score (IS) metric [76] which is commonly used in
recent text to image generation methods. However, as IS does not evaluate correspondence
between images and captions, we also employ an extrinsic evaluation using image captioning
using the Show-and-Tell caption generator [94] as in [32]. The baselines for this task cover state-
of-the-art text-to-image synthesis methods, such as SG2IM [35], StackGAN [100], HDGAN [101],
AttnGAN [96]. We also perform human evaluations using crowdsourcing for the abstract scene
and composite image generation tasks.

2.5 Results

Abstract Scenes and Semantic Layouts: Table 1 shows quantitative results on Abstract
Scenes. Text2Scene improves over [102] and our variant on all metrics except U-obj Coord.
Human evaluation results (the last column in Table 1) confirm the quality of our outputs,
where the score values presented are the percentage of sentence-scene pairs marked by a human
evaluator as a true entailment. The results also suggest that our proposed metrics correlate
with human judgment on the task.

Table 2 shows an extrinsic evaluation on the layout generation task. We perform this
evaluation by generating captions from our predicted layouts. Results show our full method
generates the captions that are closest to the captions generated from true layouts.
Synthetic Image Composites: Table 3 shows evaluation of synthetic scenes using automatic
metrics. Text2Scene without any post-processing already outperforms all previous methods
by large margins except AttnGAN [96]. As our model adopts a composite image generation
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Methods
U-obj B-obj

Pose Expr
U-obj B-obj Human

Prec Recall Prec Recall Coord Coord Eval.

Zitnick et al. [102] 0.722 0.655 0.280 0.265 0.407 0.370 0.449 0.416 0.555
Text2Scene (w/o attention) 0.665 0.605 0.228 0.186 0.305 0.323 0.395 0.338 0.431
Text2Scene (full) 0.760 0.698 0.348 0.301 0.418 0.375 0.409 0.483 0.644

Table 1: Evaluations on the Abstract Scenes dataset. Our full model performs better in all
metrics except U-obj Coord which measures exact object coordinates.

Methods B1 B2 B3 B4 METEOR ROUGE CIDEr SPICE

Captioning from True Layout [98] 0.678 0.492 0.348 0.248 0.227 0.495 0.838 0.160

Text2Scene (w/o attention) 0.591 0.391 0.254 0.169 0.179 0.430 0.531 0.110
Text2Scene (full) 0.615 0.415 0.275 0.185 0.189 0.446 0.601 0.123

Table 2: Quantitative evaluation on the layout generation task. Our full model generates
more accurate captions from the generated layouts than the baselines. We also include caption
generation results from ground truth layouts as an upper bound on this task.

framework without adversarial training, gaps between adjacent patches may result in unnat-
urally shaded areas. We observe that, after performing a regression-based inpainting [67],
the composite outputs achieve consistent improvements on all automatic metrics. We posit
that our model can be further improved by incorporating more robust post-processing or in
combination with GAN-based methods. On the other hand, human evaluations show that

Ratio

Text2Scene > SG2IM [35] 0.7672
Text2Scene > HDGAN [101] 0.8692
Text2Scene > AttnGAN [96] 0.7588

Table 4: Human evaluation on the
synthetic image generation task.

our method significantly outperforms alternative ap-
proaches including AttnGAN [96], demonstrating the
potential of leveraging realistic image patches for text-
to-image generation. It is important to note that
SG2IM [35] and Hong et al [32] also use segment and
bounding box supervision – as does our method, and
AttnGAN [96] uses an Imagenet (ILSVRC) pretrained
Inceptionv3 network. In addition, as our model con-
tains a patch retrieval module, it is important that the
model does not generate a synthetic image by simply
retrieving patches from a single training image. On average, each composite image generated
from our model contains 8.15 patches from 7.38 different source images, demonstrating that the
model does not simply learn a global image retrieval.

2.6 Summary

In this chapter, we present a novel sequence-to-sequence model for generating compositional
scene representations from visually descriptive language. We provide extensive quantitative
analysis of our model for different scene generation tasks on datasets from two different domains:
Abstract Scenes [102] and COCO [51]. Experimental results demonstrate the capacity of our
model to capture finer semantic concepts from visually descriptive text and generate complex
scenes.

3 Learning to Retrieve Complex Scenes with Region-aware Rep-
resentations

3.1 Introduction

In this chapter, we focus on learning region-aware visual and textual representations for text-to-
image retrieval. Retrieving images from text-based queries has been an active area of research.
Significant improvement has been achieved over the past years with advances in representation
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Methods IS B1 B2 B3 B4 METEOR ROUGE CIDEr SPICE

Real image 36.00±0.7 0.730 0.563 0.428 0.327 0.262 0.545 1.012 0.188

SG2IM [35] 6.7±0.1 0.504 0.294 0.178 0.116 0.141 0.373 0.289 0.070
StackGAN [100] 10.62±0.19 0.486 0.278 0.166 0.106 0.130 0.360 0.216 0.057
HDGAN [101] 11.86±0.18 0.489 0.284 0.173 0.112 0.132 0.363 0.225 0.060
Hong et al [32] 11.46±0.09 0.541 0.332 0.199 0.122 0.154 – 0.367 –
AttnGAN [96] 25.89±0.47 0.640 0.455 0.324 0.235 0.213 0.474 0.693 0.141

Text2Scene (w/o inpaint.) 22.33±1.58 0.602 0.412 0.288 0.207 0.196 0.448 0.624 0.126
Text2Scene (w inpaint.) 24.77±1.59 0.614 0.426 0.300 0.218 0.201 0.457 0.656 0.130

Table 3: Quantitative evaluation on the synthetic image generation task. Our model is superior
on automated metrics than all competing approaches except AttnGan.

Figure 4: An example of the interactive image retrieval with our Drill-down model, where a
user generated query (Ut) progressively refines the search results (St) until the target image is
among top search results.

learning but finding very specific images with detailed specifications remains challenging. We
focus on a scenario where a user is trying to find an exact image, or similarly where the user has
a very specific idea of a target image, or is deciding on-the-fly while querying. An example of
this type of interaction is shown in Fig. 4. We propose Drill-down, an interactive image search
framework for retrieving complex scenes, which learns to capture the fine-grained alignments be-
tween images and multiple text queries. Our work is inspired by the observations that: (1) user
queries at each turn may not exhaustively describe all the details of the target image, but focus
on some local regions, which provide a natural decomposition of the whole scene. Therefore,
we explicitly represent images as a set of object/stuff level features; (2) complex scenes contain
multiple objects that might share the same feature subspace. Existing state representations
of sequential text queries condense all image properties in a single state vector, which makes
it difficult to distinguish entities sharing the same feature subspace, such as multiple person

instances. To address this, we maintain a set of compositional state vectors, encouraging each
of the vectors to encode text queries corresponding to a distinct image region.

3.2 Related Work

Text-based image retrieval has been an active research topic for decades [12, 13, 74]. Ko-
vashka et al [40, 41] proposed using user feedback based on individual visual attributes to
progressively improve search results. Arandjelovic et al [5] proposed a multiple query retrieval
system that was used for querying specific objects within a large set of images. These works
show that multiple independent queries generally outperform methods that jointly model the
input set with a single query. Since the deep learning revolution, dialog based image search
systems using deep-learned features [26, 49] were also introduced. Liao et al [49] proposed to ag-
gregate multi-round user responses from trained agents or human agents in order to iteratively
refine a retrieved set of images using a hierarchical recurrent encoder-decoder framework [77].
Guo et al [26] used multiple rounds of natural language queries, and proposed collecting relative
image captions as supervision for a product search task. Also relevant to our research are the
existing works on learning image-word [28, 36, 46] or region-phrase [60] alignments for vision-
language tasks. Karpathy et al [36] proposed to learn a bidirectional image-sentence mapping
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by jointly embedding fragments of images (objects) and sentences. Niu et al [60] extended this
work by jointly learning hierarchical relations between phrases and image regions in an iterative
refinement framework. Lee et al [46] developed a stacked cross attention network for word-
region matching. More closely related to our work are Memory Networks [38, 83, 92], which
perform query and possibly update operations on a predefined memory space. In contrast to
this line of research, we explore a more challenging scenario where the model needs to create

and update the memory (i.e. the state vectors) on-the-fly so as to maintain the states of the
queries.

3.3 Drill-down

(1) red brick of fireplace

(2) china plates and glasses

…

(t-1) flowers on the dining 
table

(t) candle style chandelier 
hanging down from ceiling

Query Encoder

Queries

Faster
RCNN

!(#, %) Region
Features

Cross Modal Similarity

State Vectors (t)
GRU

'

(1) red brick of fireplace
(2) china plates and glasses
(3) group of three candle sticks 
on mantel
(4) flowers on the dining table
(5) candle style chandelier 
hanging down from ceiling

(6) wooden chairs on the carpet
New Query

State Vectors ()*+

GRU

Sentence Rep. ,)

State Vectors ()

Faster
RCNN

!(#, %)
Region

Features

Cross Modal Similarity

'

Figure 5: Overview of our model. Drill-down maintains a fixed set of state vectors X, modeling
the historical context of the user queries. Given a new query qt, our model selects and updates
one of the state vectors. The updated state vectors Xt and image region features are then
projected to a cross-modal embedding space to measure the fine-grained alignment between
each region-state pair.

Our model is inspired by the observation that users naturally underspecify in their queries by
referring to local regions of the target image. We aim to capture these region level alignments
by learning to map text queries and the target image into two sets of compositional vector
representations, and computing the matching score by measuring similarities between them.
Figure 5 provides an overview of our model.

Image representation. To identify candidate regions referred in the queries, we follow [3, 46].
For each image, we detect the potential objects and salient regions using the FasterRCNN
detector [72]. Corresponding features are extracted from the ROI pooling layer of the detector.

Query representation. Supporting multi-round retrieval requires a state representation for
integrating the queries from multiple turns. We propose to maintain a set of latent represen-
tations for multiple turn queries. While users might provide a general image description in the
first round of querying, subsequent queries typically describe more specific regions. An ideal set
of latent vectors should learn to group and encode the input queries into visually discriminative
representations referring to distinct image regions.

Cross modal similarity. To measure the similarity of visual and language representations,
we leverage a distance metric similar with the cross stacked attention module proposed in [46].
The main difference is, the input text features for [46] are a list of word vectors with a dynamic
length. Our method integrates multiple sentences into a set of latent vectors with a fixed length.

Query encoding. Each query sentence is first encoded into an embedding vector via a uni-
directional recurrent network with gated recurrent units (GRU). Given the assumption that
each text query describes a sub-region of the image, each query only updates a subset of the
state vectors. In this work, we focus on a simplified scenario where each query only updates
a single state vector. In detail, we develop a policy function that takes that the text query at
each time step as input. This function produces a score for each state vector, indicating its
probability of being updated by the input query. The state vector with the highest score is
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Figure 6: Quantitative evaluation of our models and the baselines. (A) Comparison of models
using query representations of the same memory size; (B) Comparison of the models using query
representations of different memory sizes. The horizontal axis represents the query turn.

updated by the input query using sing a single uni-directional gated recurrent unit cell (GRU
Cell). Note that our formulation is similar to a hard attention module [95].

Training. The full model, including the feature learning/update and the policy function can
be trained jointly by the policy gradient algorithm [84] using the negative of the cross modal
similarity score as the reward. Following the paradigm proposed in [26, 73], we first pretrain all
the modules except the policy function using a supervised embedding loss, then jointly optimize
all the modules using policy gradient.

3.4 Experiments

Dataset We evaluate the performance of our method on the Visual Genome dataset [42].
Each image in Visual Genome is annotated with multiple region captions. We preprocess the
data by removing duplicate region captions (e.g. multiple captions that are exactly the same),
and images with less than 10 region captions. We use region captions as queries to train our
model, thus bypassing the challenging issue of data collection for this task.

Baselines We compare our method with four baseline models: (1) HRE: a hierarchical recur-
rent encoder network, which is commonly adopted by recent dialog based approaches [26, 49, 82].
We consider the framework using text queries as context, which consists of a sentence encoder,
a context encoder and an image encoder. The sentence encoder has the same word and sen-
tence embedding as the proposed model. The image encoder maps the mean-pooled features of
ResNet152 [30] into a one-dimensional feature vector via a linear projection. The ResNet model
is pre-trained on ImageNet [18]. The model is trained to optimize the cosine similarity between
the text and image features by a triplet loss with hard negatives as in [22]. (2) R-HRE: a
model similar to baseline (1) but is trained with the region features, as in the proposed method.
(3) R-RE: a model similar to baseline (2) but instead of using a hierarchical text encoder,
this baseline uses a single uni-directional GRU network which encodes the concatenation of the
queries. (4) R-RankFusion: a model where each query is encoded by a uni-directional GRU
network and each image is represented as a set of region features. The ranks of all images are
computed separably for each turn. The final ranks of the images are represented as the averages
of the per-turn ranks.

Evaluation metrics To measure the retrieval performance, we use the common R@K metric,
i.e., recall at K - the ratio of queries for which the target image is among the top-K retrieved
images. The R@1, R@5 and R@10 scores at each turn are reported as shown in Fig. 6.
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3.5 Results

Simulated user queries. Due to the lack of existing benchmarks for multiple turn image
retrieval, we use the annotated region captions in Visual Genome to mimic the user queries. As
region captions focus more on invariant information, such as image contents, and convey fewer
irrelevant signals, such as different speaking/writing styles, they could be seen as the common
”abstracts” of real queries in different forms. While we agree that strong supervisory signals
such as real user queries could bridge the domain gap and would like to explore further in this
direction, we choose at this stage to use only ”weak but free” signals and investigate their poten-
tials of being generalized to real scenarios. First, we compare our method against the baseline
models when using query representations of the same memory size. In particular, we use 5 state
vectors in our model (M = 5), each with a dimension of 256. Accordingly, the baseline models
use a 1280-d query vector. Figure 6(A) shows the per-turn performance of the models on the
test set. Both the R-RE1280 and R-HRE1280 baselines perform better than the HRE1280 model,
demonstrating the benefit of incorporating region features. R-HRE1280 is superior to R-RE1280,
demonstrating the benefit of hierarchical context encoding. R-RankFusion1280 performs inferior
to all other models. Note that it also requires more memory to store the ranks of all images at
each turn. Our model significantly outperforms all baselines by a large margin. On the other
hand, we observe that the performance of our model will degrade when different queries have
to share the same state vector.

Real user queries. We evaluate our method with the queries from crowdsourced human users
via a multi-round interactive system adapted from [11]. Given a target image, a user is asked to
search for it by providing descriptions of the image content. The system shows top-5 retrieved
images to the user per turn as context so that the user can improve the results by providing addi-
tional descriptions.

Figure 7: Human subject evaluation of
the HRE1280, R-HRE1280 baselines and our
Drill-down3×256 model.

This process is repeated until the image is found
or it reaches 5 turns. We sample 80 random im-
ages from the test set and evaluate HRED1280,
R-HRED1280 and Drill-down3×256 on these images
respectively. Each image is viewed by 3 differ-
ent users. For each model, the best result on
each image is selected across users to ensure high
quality responses. As shown in Figure 7, most
users (> 80%) successfully find the target image
within 5 turns, demonstrating the effectiveness of
the multi-round search paradigm and the quality
of using region captions for training. In particular,
Drill-down3×256 consistently outperforms HRE1280

and R-HRE1280 on all evaluation metrics. On the
other hand, as real user queries have more flexible
forms, e.g. longer sentences, repeated descriptions
of the same region, etc, we also observe smaller
performance gaps between our method and the baselines. We believe further efforts such as real
query data collection are needed to systematically fill this domain gap.

3.6 Summary

In this chapter, we present an efficient and effective framework for interactive retrieval of com-
plex scene images. Particularly, we propose a novel region-aware representation of multiple
round text queries and demonstrate its effectiveness using both simulated and real user inputs.
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4 Learning Visual Similarity of Images using Global and Local
Descriptors

4.1 Introduction

In the Text2Scene and Drill-down projects, we leverage part-based representations to model
the correlation between visual and language data. To complete the dissertation, I plan to per-
form research on learning visual correlation of an image-pair using local-based representations.
Particularly, we study the problem of instance-level recognition/retrieval.

Distinct from category-level recognition where the goal is to identify an object class, instance
recognition aims to identify a particular object instance. As the number of possible labels can
be very large, instance recognition is typically cast as image retrieval instead of classification ,
and usually involves both metric learning and local feature matching strategies for reranking.
Specifically, recent approaches incorporate both global and local descriptors extracted from
deep learning models [7, 61], where the global descriptor is used to reduce the search space and
the local descriptors are used to re-rank the nearest images. The dominant solution for the
reranking task is geometric verification [66].

We propose a Reranking Transformer (RRT), which learns to predict the similarity of an
image-pair using global and local features. Similar with geometric verification, Reranking Trans-
formers aim to learn the visual relation of an image-pair but with a more straightforward
pipeline: it directly predicts a similarity score of the matching images, instead of estimating a
homography. The proposed method leverages the transformer architecture [90] which has led to
significant improvements in several natural language processing [19, 52] and vision-and-language
tasks [14, 48, 54]. Most recently, it has also been used for pure visual tasks, notably for image
synthesis [64], recognition [20] and object detection [10]. To the best of our knowledge, our pro-
posed work is the first to adopt transformers for a purely visual task involving the analysis of
image pairs in the context of reranking image search results. The proposed method has several
potential advantages:

• It is lightweight. Compared with the CNN feature extractors which have over 20 million
parameters (e.g. 25 million in ResNet 50), the proposed model has 2.2 million parameters.

• It can be easily parallelized such that re-ranking the top-100 neighbors requires only a
single forward-pass, allowing for more efficient model inference.

• It can potentially be jointly optimized with the CNN feature extractor, which may lead to
feature representations tailored to downstream tasks and further accuracy improvements.

4.2 Related Work

Global/Local features for instance recognition/retrieval. Local descriptors, either hand-
crafted [53] or extracted from from convolution neural networks (CNN) [21, 61, 78], are widely
used for instance image recognition/retrieval. Pioneering systems include [59, 79]. More recent
approaches propose to detects local features from a CNN based feature extractor by performing
a non-local maximum suppression [21, 87], or leveraging an extra attention module [9, 61]. On
the other hand, a global descriptor has the advantage of providing a compact representation of
an image, facilitating large-scale retrieval. Most of the existing global descriptors are extracted
from CNN based models [7, 25, 68, 89] by spatially pooling two-dimensional feature responses [6,
68, 89]. These pooling operations may hinder global descriptors from modeling complex spatial
relationship among image regions.

Reranking for instance recognition/retrieval. Compared with global/local feature
learning, image search by reranking is less explored. The classic geometric verification ap-
proach is widely used in both traditional [66] and the most recent work [9, 61, 78]. Geometric
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Image I Image ĪBinary classifier:   
Do  and  represent the same object/scene?  I Ī

Figure 8: Illustration of the proposed Reranking Transformer (RRT) model. The input of RRT
is a sequence of global and local descriptors (circled in blue) extracted from an image-pair. This
sequence is fed into a multi-layer transformer model which produces a similarity score.

verification assumes rigid objects and seeks to estimate a linear transformation between images
by iteratively aligning local descriptors from each image. Inspired by text retrieval, query ex-
pansion techniques have also been introduced for image retrieval [15, 16, 88]. These methods
differ from geometric verification and our work as they rely on analysing the nearest neighbor
graph built on the query and gallery images during testing.

Transformers for visual tasks. Transformers have become the dominant model archi-
tecture in natural language processing [19, 52]. Recently, it has also been introduced to vision-
and-language [48, 54] and pure vision tasks [10, 64]. Parmar et.al. [64] develop a transformer
based autoregressive model for image synthesis. Carion et.al. [10] casts object detection as a
direct set prediction problem using transformers. All these prior works explore the application
of transformers for making single image predictions while we leverage transformers to learn the
visual relation of an image-pair in the context of reranking image search results.

4.3 The Proposed Method

Fig. 8 provides an illustration of the proposed model. We follow the transformer architecture
introduced in [90], which takes a sequence of feature vectors as input. In the proposed model,
the feature vectors are the global and local descriptors extracted from the image-pair.

Image representations. An image I is represented by a global descriptor: xg ∈ Rdg and a
set of L local descriptors: xl = {xl,i ∈ Rdl}Li=1. Both xg and xl are extracted from a CNN
backbone. Optionally, each xl,i is associated with a coordinate tuple pl,i = (u, v) ∈ R2 and a
scale factor sl,i ∈ R, indicating the pixel location and image scale where xl,i is extracted from.
In our case, sl,i is an integer, representing the index of a set of pre-defined image scales.

Input. Following the transformer encoder proposed in [19], we define the input sequence of
features, extracted from an image-pair (I, Ī), as:

X(I, Ī) := [ 〈CLS〉; fg(xg); fl(xl,1); · · · ; fl(xl,L);

〈SEP〉; f̄g(x̄g); f̄l(x̄l,1); · · · ; f̄l(x̄l,L) ],
(1)

where:
fg(xg) := xg + α;

fl(xl,i) := xl,i + ϕ(pl,i) + ψ(sl,i) + β

f̄g(x̄g) := x̄g + ᾱ;

f̄l(x̄l,i) := x̄l,i + ϕ(p̄l,i) + ψ(s̄l,i) + β̄.

(2)

Here, 〈CLS〉 a special token used for summarizing the signals from both images. 〈SEP〉
is an extra separator token. α, ᾱ, β, β̄ are one dimensional segment embeddings, being used to
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distinguish the global and local descriptors of I and Ī. ϕ is a linear position embedding, as used
in [10]. ψ is a linear embedding taking the scale index sl,i as input.

Model architecture. We leverage the standard architecture defined in [55], which comprises
C transformer layers. The output of the model is a set of new vectors ZC,k, which is of the
same length as the input sequence.

Training objective. The proposed model is trained to optimize a binary cross entropy loss:

E(I, Ī) = BCE(sigmoid(ZC,〈CLS〉W
T
z ),1(I, Ī)), (3)

where ZC,〈CLS〉 is a one-dimensional feature vector, corresponding to the input token 〈CLS〉. It

is extracted from the last transformer layer. W T
z ∈ R(hd)×1 is a linear function mapping Z

〈CLS〉
C

into a logit scalar. 1(I, Ī) is an indicator function which equals to one when I and Ī represent
the same object/scene, or zero otherwise.

4.4 Preliminary Experiments

Dataset. We perform preliminary experiments on three instance recognition benchmarks:
Google Landmarks v2 [93], Revisited Oxford/Paris [69]. Google Landmarks v2 (GLDv2) [93] is
a large-scale dataset which includes over five millions images from 200k natural landmarks. We
sample a small subset of the images from the “v2-clean” split of GLDv2 for training. Revisited
Oxford (ROxf) and Paris (RPar) [69] are typically used as the evaluation sets for instance
recognition/retrieval, which have 4,993 and 6,322 gallery images respectively. They both have
70 query images. An extra distractor set (R1M) with 1,001,001 images is also included for
large-scale experiments. We report mean Average Precision (mAP) on the Medium (+R1M)
and Hard (+R1M) setups.

Implementation. At this stage, we mainly focuses on similarity learning rather than feature
learning, we leverage image descriptors obtained from state-of-the-art feature extractors. In

Figure 9: Qualitative examples from Revisited
Oxford [69]. For each query, the top-3 neigh-
bors predicted by geometry verification and the
proposed Reranking Transformer are presented.
Correct/incorrect neighbors are marked with
green/red borders.

particular, we use the DELG models provided
by [9] with ResNet50 [29] as the CNN back-
bone. DELG provides a unified framework
for global/local feature extraction. The local
descriptors are extracted from 7 image scales
ranging from 0.25 to 2.0. The global descrip-
tor is extracted from 3 image scales: { 1√

2
, 1,

√
2}. In the original DELG model, each local

descriptor comes with an attention score. The
top 1000 local descriptors with the highest at-
tention scores are selected for image rerank-
ing. In our experiments we choose the top 500
local descriptors. During training, the posi-
tive image for the query is randomly sampled
from the images sharing the same label as the query. the negative image is randomly sampled
from the top-100 neighbors returned by the global retrieval, which have a different label from
the query.

Comparison with Geometric Verification. As the main baseline, geometric verification
(GV) has a very similar goal as our approach. We perform experiments on comparing GV and
RRT using the same set of descriptors. We follow the protocol in DELG [9]: given a query,
we use its global descriptor to retrieve a set of top-ranked images. The top-100 neighbors are
reranked by GV and RRT. On ROxf and RPar, both GV and RRT significantly outperform
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Method
Medium Hard

ROxf +R1M RPar +R1M ROxf +R1M RPar +R1M

DELG global 69.7 55.0 81.6 59.7 45.1 27.8 63.4 34.1

GV 75.4 61.1 82.3 60.5 54.2 36.8 64.9 34.8
RRT (ours) 75.53 61.23 82.68 60.70 56.35 37.02 68.56 37.54

Table 5: Comparison to geometric verification on Revisited Oxford/Paris [69]. The mAP scores
on the Medium (+R1M) and Hard (+R1M) setups are reported.

global-only retrieval, as shown in Table 5. RRT shows further advantages over GV. On ROxf
(+R1M), RRT performs on par with GV on the Medium setup and consistently better on the
Hard setup. On RPar (+R1M), RRT consistently outperforms GV. The largest performance
gap appears on the Hard setup. RRT obtains 2.15 (3.66) absolute improvements over GV on
ROxf (RPar). We posit that, while GV is very effective for sufficiently similar images, it has
difficulty handling challenging cases, e.g. large variations in viewpoint. Fig. 9 provides two
qualitative examples comparing the reranking results of geometry verification and the proposed
method. The queries in example (A) and (B) represent the same landmark but exhibit a large
viewpoint change. While geometry verification predicts two different sets of top neighbors, our
model predicts the same set of top ranked images for the two queries.

5 Research Plan

To complete the dissertation, I plan to include more experimental results on the newly proposed
project introduced in Chapter 4. Potential experiments include:

• More comparisons with geometry verification with different settings on different evaluation
sets. For example, using another set of feature descriptors, reranking different numbers of
top neighbors for each query, ablation study on the number of local descriptors used for
each image, evaluations on the Google landmarks v2 retrieval task, etc.

• Comparisons with other image reranking approaches, such as query expansion based meth-
ods [88] over the same settings.

• Studying the test time behaviors of the proposed method and the baselines, e.g. inference
time on CPU/GPU based machines.

• Exploring the potential benefit of jointly optimizing the feature extractor and the proposed
model, which may lead to better feature representations and further accuracy improve-
ments.

With more solid evaluations, we hope the proposed method could be a peer-reviewed pub-
lication.
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