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Abstract

Images and text inherently exhibit hierarchical structures, e.g. scenes built from ob-

jects, sentences built from words. In many computer vision and natural language

processing tasks, learning accurate prediction models requires analyzing the corre-

lation of the local primitives of both the input and output data. In this thesis, we

develop techniques for learning local representations of images and text and demon-

strate their effectiveness on visual recognition, retrieval, and synthesis. In particular,

the thesis includes three primary research projects:

In the first project, we explore the benefits of learning compositional image repre-

sentation for text-to-image generation. The latest text-to-image generation research is

dominated by Generative Adversarial Network (GAN) based methods, which predicts

pixel-wise intensity values. While demonstrating remarkable results, these methods

still have difficulties generating complex scenes with multiple interacting objects. In

this work, we propose to model the local structures instead of the raw pixel values

of the images. We develop a sequence-to-sequence image synthesis framework that

produces a scene depicted in a textual description by sequentially predicting objects,

their locations, and their attributes such as sizes, aspect ratios. Compared to previ-

ous GAN-based approaches, our method achieves competitive or superior performance

while producing more interpretable results.

In the second project, we show the advantage of learning compositional text rep-

resentations for interactive image search using multiple rounds of text queries. Cross-

modal image search is a well-studied research topic where most of the recent ap-

proaches focus on learning a linear embedding space of the visual and textual data.

We observe that this global representation cannot distinguish object instances that

share the same feature space. Thus we propose an effective framework that encodes

multiple rounds of natural language queries with a region-aware state representation
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and show that it outperforms existing sequential encoding and embedding models on

both the simulated and real user queries.

In the third project, we focus on learning the visual relation of an image-pair in

the context of reranking image search results for instance image recognition. We pro-

pose a lightweight and straightforward pipeline that learns to predict the similarity of

an image-pair directly. The key ingredient of this work is a transformer-based archi-

tecture that models the interactions between the global/local descriptors within the

individual image and across the image pair. Our experiments show that the proposed

method outperforms previous approaches while using much fewer local descriptors. It

can also be jointly optimized with the feature extractor, leading to further accuracy

improvement.
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Chapter 1

Introduction

1.1 Motivation

Representation learning is a core problem in computer vision and natural language

processing. The goal is to learn an expressive representation of the input data that

can facilitate the inference stage of the downstream task. As can be interpreted from

this definition, the right representation is highly correlated with the input data and

the inference model. Pioneering recognition systems in computer vision (CV) and nat-

ural language processing (NLP) do not make full use of such correlations but rely on

combining hand-crafted features (e.g. SIFT in CV, TF-IDF in NLP) with separably

optimized prediction models. With the advent of deep learning, joint optimizing the

feature representation and the inference model has become a dominant solution. It

is shown that, with sufficient annotated data and computing resources, these end-to-

end learnable representations significantly outperform the early hand-crafted features,

especially when the inference involves only simple (e.g. linear) classifications. As ev-

idence, the first deep learning-based visual recognition model, AlexNet [66], achieved

a top-1 error of 37.5% on the ILSVRC challenge [30], a 20% error reduction from the

previous state-of-the-art (with a top-1 error of 47.1%).
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The success of deep learned features has further been demonstrated on various

visual and linguistic recognition tasks, e.g. object detection [102], natural language

inference [31], visual question answering [4], etc, although conceptually the solution

is straightforward: encoding the raw images/text into vectorized representations us-

ing neural networks (e.g. convolutional neural network [66], recurrent network [24],

transformer [130]), and making predictions on top of these representations. This solu-

tion is usually implemented as a black-box framework and deployed widely on diverse

tasks. The key magic is a large amount of annotations and computational resources.

It is widely believed that [119, 147] given sufficient labeled data, a large (usually

overparameterized) neural network could learn to “memorize” the distribution of the

supervised data, with no bells and whistles. This is especially true when the inference

is a simple linear classification. For example, the state-of-the-art visual classification

model, Vision Transformer [33], has 632 million parameters, and was trained on a

large dataset of over 300 million image-label pairs [119]. The training of this model

requires 2500 TPUv3-core-days. The state-of-the-art language model, GPT-3 [14],

has 175 billion parameters, which is even more computationally prohibited. The need

for large labeled datasets and large models hinders the deployment of these super-

vised representations on domains where annotations/demonstrations are sparse and

not easy to collect (e.g. medical applications).

On the other hand, when the desired output of the model is beyond the class label

but exhibits complex structures, e.g. sentences or images, the benefit of these general

feature representations becomes unclear. On the vision-language tasks, it is shown

in [44] that the performance of random vectors is surprisingly closed to the learned

embeddings [93] when enough labeled data are present. On the image matching task,

[55] demonstrates that, with proper hyperparameter settings, classical solutions such

as SIFT [77] can still outperform the learned features. For these “rich” prediction

problems, we believe the generally learned features are sub-optimal as they do not

2



Figure 1.1: Local primitives of images and text. Complex visual scenes can be mod-
eled as the composition of semantic segments or pixel-level elements. Complex lin-
guistic expressions can be modeled as the composition of phrases, words or characters.

explicitly model the interaction between the local primitives of the structured input

and output. This also leads to another drawback: with the black-box pipeline, the

inference is less interpretable.

In this thesis, we aim to address the problem of learning image and text repre-

sentations for various vision and language tasks. As we observe, one feature shared

by the visual and textual data is the capacity of representing complex concepts us-

ing a hierarchy of local primitives. As shown in Fig. 1.1, both images and text can

be represented by different forms of constituent elements, e.g. characters/words for

text, points/segments for images. We believe that explicitly learning the representa-

tions of these local concepts can ease the inference stage, especially for “rich” visual

predictions where both the input and output data comprises complex structures.

Furthermore, it may also lead to more compact model architectures [122] and feature

representations [121] that require less labeled data to train. Compared to the tra-

ditional approaches, modeling the local concepts of the input and output data and

their interactions could also lead to more interpretable predictions. My PhD research
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demonstrates that the efficiency and effectiveness of the local representations on var-

ious “rich” vision and language tasks, e.g. text-to-image synthesis [122], interactive

image retrieval [121], instance-level image recognition [123].

1.2 Local Representations in Vision and Language

Local features have been one of the most common representations in computer vision.

Much of the progress for visual recognition before the “deep learning revolution” has

built on local, or keypoint-based descriptors such as SIFT [77] and HOG [27]. Com-

pared to global signatures [89], these descriptors are believed to be more invariant

to image changes such as illumination, translation, occlusion, and truncation. They

were used in a wide variety of visual prediction tasks such as texture recognition [70],

scene recognition [68], image matching [55], 3D reconstruction [1], etc. Part-based fea-

tures [107, 146] were later introduced to model semantic visual concepts, e.g. classes,

attributes, and relations. They were typically used in combination with statistical

models for both pure visual recognition tasks and vision-and-language tasks. Fa-

mous examples include the Deformable Part Model [36] for object detection and the

BabyTalk [67] system for image captioning. With the popularity of deep learning,

local representations extracted from Convolutional Neural Networks play an impor-

tant role in building high-capacity visual prediction models. Both grid-based [54] and

region-based [3] features have shown promising performance on many vision-and-

language tasks, e.g. image captioning [141], visual question answering [4], referring

expression grounding [58], etc.

Compositional (part-based) representations have also been widely studied in lin-

guistics and adjacent fields. Early systems [84, 114] explore incorporating explicit

composition operations into vector-based systems. More recent approaches focus

on learning distributed representations of natural language from large text corpora.
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Figure 1.2: Overview of the Text2Scene model that sequentially produces a composite
image from an input sentence.

Word2Vec [83] and GloVe [93] proposed to model the co-occurrence of words in both

local and global contexts, while Socher et al [115] developed a unified framework to

learn the hierarchy of words, phrases, and sentences using recursive neural networks.

As a recent breakthrough in natural language processing, the Transformer [80] model

learned contextualized text representations using a novel attention-based sequence

encoder.

1.3 Outline of This Thesis

In this thesis, we explore the local representations of images and text and their ap-

plications in three research projects, one chapter for each.

In Chapter 2, we introduce Text2Scene, a sequence-to-sequence model that gen-

erates various forms of images from natural language descriptions. Unlike recent

works that rely on Generative Adversarial Networks (GANs) [40] to generate pixel-

wise intensity values, we propose to learn a compositional (part-based) representa-

tion of the image. Text2Scene sequentially generates objects and their attributes

(location, size, appearance, etc) by attending to different parts of the input text

and the current status of the generated scene. Fig. 1.2 provides an overview of the

Text2Scene model. Compared to the state-of-the-art approaches [100, 148], the pro-
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Figure 1.3: An example of retrieving a target image using our Drill-down model [121].
T user progressively provides four rounds of text queries to refine the retrieval results.

posed generation pipeline is more interpretable and data-efficient. We demonstrate

that Text2Scene can handle the generation of different forms of scene representations,

including cartoon-like scenes, bounding-box based scene layouts, and composite im-

ages with superior performance on both automatic and human evaluations. This work

was published in CVPR 2019 [122];

In Chapter 3, we focus on learning compositional representations of text. Particu-

larly, we study the task of interactive image retrieval using natural language queries,

where a user progressively provides input queries to refine a set of retrieval results.

The key challenge of this task is how to integrate multiple rounds of text queries.

While most of the previous approaches leverage task-agnostic text representations,

e.g. the hidden state from a recurrent neural network, we propose Drill-down, an

effective framework that learns a region-aware text representation that significantly

extends previous methods. The proposed representation has an extra dimension that

can help distinguish object instances from the same category, while still maintain-

ing small memory/computational budgets. Fig. 1.3 shows an example of retrieving

a target image using our Drill-down model. We compare our method with existing

sequential encoding and embedding networks, demonstrating superior performance

on two proposed benchmarks: automatic image retrieval on a simulated scenario that

uses region captions as queries, and interactive image retrieval using real queries from

human evaluators. This work was published in NeurIPS 2019 [121].
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Figure 1.4: Overview of the instance retrieval pipeline using our Reranking Trans-
formers [123]: we first perform global feature based retrieval to obtain the initial ranks
of the candidate images, then use the proposed Reranking Transformer to refine the
top-ranked images.

In Chapter 4, we explore learning the visual similarity of an image pair for

instance-level image recognition. The goal of the task is to search in a large database

for images that match a specific object/scene instance in a query image. To address

this task, early systems typically perform a global retrieval step to reduce the search

space, and a local refinement step that performs domain-specific reranking by lever-

aging operations such as geometric verification. While these works have managed

to match images that are sufficiently similar, they still have difficulty handling chal-

lenging cases, such as large viewpoint variations. In this work, we propose Rerank-

ing Transformers (RRTs) [123] as a lightweight model to learn the matching images

(Fig. 1.4). The key component of our approach is a transformer based architecture

that models the correlations between the local structures of the image pair. We per-

form extensive experiments, demonstrating that the proposed approach outperforms

prior reranking approaches while using much fewer descriptors. We also show that,

unlike existing approaches, RRTs can be optimized jointly with the feature extractor,

which can lead to feature representations tailored to downstream tasks and further

accuracy improvements.
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Chapter 2

Learning Compositional Image

Representations for Text-to-image

Synthesis

2.1 Introduction

As the first work in this thesis, we introduce Text2Scene [122], a model to interpret

visually descriptive language in order to generate compositional scene representations.

We specifically focus on generating a scene representation consisting of a list of ob-

jects, along with their attributes (e.g. location, size, aspect ratio, pose, appearance).

We propose a unified framework to generate three types of scenes as shown in Fig-

ure 2.1, (1) Cartoon-like scenes as depicted in the Abstract Scenes dataset [154], (2)

Object layouts corresponding to image scenes from the COCO dataset [74], and (3)

Synthetic scenes corresponding to images in the COCO dataset [74].

Generating rich textual representations for scene generation is a challenging task.

For instance, input textual descriptions could hint only indirectly at the presence of

attributes – e.g. in the first example in Fig. 2.1 the input text “Mike is surprised”

8



Figure 2.1: Sample inputs (top) and outputs of our Text2Scene model (middle), along
with ground truth reference scenes (bottom) for the generation of abstract scenes
(left), object layouts (middle), and synthetic image composites (right).

should change the facial attribute on the generated object “Mike”. Textual descrip-

tions often have complex information about relative spatial configurations – e.g. in

the first example in Fig. 2.1 the input text “Jenny is running towards Mike and the

duck” makes the orientation of “Jenny” dependent on the positions of both “Mike”,

and “duck”. In the last example in Fig. 2.1 the text “elephants walking together in

a line” also implies a certain overall spatial configuration of the objects in the scene.

To address this problem, state-of-the-art approaches [51, 56, 100, 143, 148, 150]

typically rely on Generative Adversarial Networks (GANs) [40], which have demon-

strated impressive results on a number of image synthesis tasks, such as generating

flowers [85] or birds [136]. However, our experiments show that, these GAN-based

methods still struggle with complex scenes of multiple interacting objects. As shown

in Fig. 2.2(A), the state-of-the-art approach AttnGAN [143] has difficulty in handling

a caption like “a cat curled up on a skateboard in a living room”. We believe that it
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Figure 2.2: GAN-based text-to-image synthesis methods struggle with few-shot cases.
(A) the state-of-the-art approach AttnGAN [143] has difficulty in handling the caption
“a cat curled up on a skateboard in a living room”; (B) in the COCO [74] dataset,
there are only three examples that capture a scene with a “cat” on a “skateboard”.

is because training a generative adversarial network or pixel-wise synthesis model in

general requires a large amount of labeled data covering all the scenarios, which are

not easy or even impossible to collect. For example, most of the GAN-based methods

leverage the COCO dataset [74] as one of the main benchmarks. While the training

split of COCO [74] has over 800 thousand images, there are only three examples that

capture a scene with a “cat” on a “skateboard” (Fig. 2.2 (B)).

Our method, unlike recent approaches, does not rely on Generative Adversarial

Networks (GANs) [40]. Instead, we produce an interpretable model that iteratively

generates a scene by predicting and adding new objects at each time step. In particu-

lar, we leverage a sequence-to-sequence approach where objects are placed sequentially

on an initially empty canvas (see an overview in Fig 2.4). Generally, Text2Scene, con-

sists of a text encoder (Fig 2.4 (A)) that maps the input sentence to a set of latent

representations, an image encoder (Fig 2.4 (B)) which encodes the current generated

canvas, a convolutional recurrent module (Fig 2.4 (C)), which passes the current state
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to the next step, attention modules (Fig 2.4 (D)) which focus on different parts of the

input text, an object decoder (Fig 2.4 (E)) that predicts the next object conditioned

on the current scene state and attended input text, and an attribute decoder (Fig 2.4

(F)) that assigns attributes to the predicted object. To the best of our knowledge,

Text2Scene is the first model demonstrating its capacities on both abstract and real

images, thus opening the possibility for future work on transfer learning across do-

mains. Text2Scene is superior to the best result reported in Abstract Scenes [154],

and provides near state-of-the-art performance on COCO [74] under automatic eval-

uation metrics, and state-of-the-art results when evaluated by humans. Compared to

the GAN based approaches, Text2Scene is shown to able to generalize to uncommon

situations illustrated in Fig. 2.2 and has a more interpretable generation pipeline

(Fig. 2.3).

Our main contributions can be summarized as follows:

• We propose Text2Scene, a framework to generate compositional scene represen-

tations from natural language descriptions.

• We show that Text2Scene can be used to generate, under minor modifications,

different forms of scene representations, including cartoon-like scenes, semantic

layouts corresponding to real images, and synthetic image composites.

• We conduct extensive experiments on the tasks of abstract image generation

for the Abstract Scenes dataset [154], semantic layout and synthetic image

generations for the COCO dataset [74]. We show that, compared to state-of-

the-art approaches, Text2Scene achieves superior performance while delivering

more interpretable results.
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2.2 Related Work

Most of the recent approaches in text-to-image synthesis [51, 56, 100, 101, 143, 148,

150] have leveraged conditional Generative Adversarial Networks (GANs). While

these works have managed to generate results of increasing quality, there are major

challenges when attempting to synthesize images for complex scenes with multiple

interacting objects without explicitly defining such interactions [144]. Inspired by

the principle of compositionality [152], our model does not use GANs but produces

a scene by sequentially generating objects (e.g. in the forms of clip-arts, bounding

boxes, or segmented object patches) containing the semantic elements that compose

the scene.

Our work is also related to prior research on using abstract scenes to mirror and

analyze complex situations in the real world [39, 132, 153, 154]. In [154], a graphical

model was introduced to generate an abstract scene from textual descriptions. Unlike

this previous work, our method does not use a semantic parser but is trained end-to-

end from input sentences. Our work is also related to recent research on generating

images from pixel-wise semantic labels [22, 53, 96], especially [96] which proposed a

retrieval-based semi-parametric method for image synthesis given the spatial semantic

map. Our synthetic image generation model optionally uses the cascaded refinement

module in [96] as a post-processing step. Unlike these works, our method is not given

the spatial layout of the objects in the scene but learns to predict a layout indirectly

from text.

Most closely related to our approach are [43, 51, 56], and [60], as these works also

attempt to predict explicit 2D layout representations. Johnson et al [56] proposed

a graph-convolutional model to generate images from structured scene graphs. The

presented objects and their relationships were provided as inputs in the scene graphs,

while in our work, the presence of objects is inferred from text. Hong et al [51] tar-
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Mike is holding a hotdog.         Jenny is sitting in the sandbox.        Jenny is holding the shovel.

object attn: 
sitting sandbox holding
attribute attn: 
jenny <eos> jenny

object attn: 
sandbox sitting mike
attribute attn: 
sandbox <eos> jenny

object attn: 
mike jenny sitting
attribute attn: 
holding hotdog mike

object attn: 
jenny jenny mike
attribute attn: 
sitting jenny holding

object attn: 
hotdog shovel holding
attribute attn: 
mike hotdog holding

object attn: 
shovel holding sandbox
attribute attn: 
shovel holding <eos>

Figure 2.3: Step-by-step generation of an abstract scene, showing the top-3 attended
words for the object prediction and attribute prediction at each time step. Notice
how except for predicting the sun at the first time step, the top-1 attended words
in the object decoder are almost one-to-one mappings with the predicted objects.
The attended words by the attribute decoder also correspond semantically to useful
information for predicting either pose or location, e.g. to predict the location of the
hotdog at the fifth time step, the model attends to mike and holding.

geted image synthesis using conditional GANs but unlike prior works, it generated

layouts as intermediate representations in a separably trained module. Our work

also attempts to predict layouts for photographic image synthesis but unlike [51], we

generate pixel-level outputs using a semi-parametric retrieval module without adver-

sarial training and demonstrate superior results. Kim et al [60] performed pictorial

generation from chat logs, while our work uses text which is considerably more under-

specified. Gupta et al [43] proposed a semi-parametric method to generate cartoon-

like pictures. However the presented objects were also provided as inputs to the

model, and the predictions of layouts, foregrounds and backgrounds were performed

by separably trained modules. Our method is trained end-to-end and goes beyond

cartoon-like scenes. To the best of our knowledge, our model is the first work tar-

geting various types of scenes (e.g. abstract scenes, semantic layouts and composite

images) under a unified framework.
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Figure 2.4: Overview of Text2Scene. Our general framework consists of (A) a Text
Encoder that produces a sequential representation of the input, (B) an Image Encoder
that encodes the current state of the generated scene, (C) a Convolutional Recurrent
Module that tracks, for each spatial location, the history of what have been generated
so far, (D-F) two attention-based predictors that sequentially focus on different parts
of the input text, first to decide what object to place, then to decide what attributes
to be assigned to the object, and (G) an optional foreground embedding step that
learns an appearance vector for patch retrieval in the synthetic image generation task.

2.3 Text2Scene

Text2Scene adopts a Seq-to-Seq framework [120] and introduces key designs for spa-

tial and sequential reasoning. Specifically, at each time step, the model modifies a

background canvas in three steps: (1) the model attends to the input text to decide

what is the next object to add, or decide whether the generation should end; (2)

if the decision is to add a new object, the model zooms in the language context of

the object to decide its attributes (e.g. pose, size) and relations with its surroundings

(e.g. location, interactions with other objects); (3) the model refers back to the canvas

and grounds (places) the extracted textual attributes into their corresponding visual

representations.

To model this procedure, Text2Scene consists of a text encoder, which takes as

input a sequence of M words wi (section 2.3.1), an object decoder, which predicts

sequentially T objects ot, and an attribute decoder that predicts for each ot their

locations lt and a set of k attributes {Rk
t } (section 2.3.2). The scene generation starts
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from an initially empty canvas B0 that is updated at each time step. In the synthetic

image generation task, we also jointly train a foreground patch embedding network

(section 2.3.3) and treat the embedded vector as a target attribute. Figure 2.3 shows

a step-by-step generation of an abstract scene.

2.3.1 Text Encoder

Our text encoder is a bidirectional recurrent network with Gated Recurrent Units

(GRUs) [24]. For a given sentence, we compute for each word wi:

hEi = BiGRU(xi, h
E
i−1, h

E
i+1), (2.1)

Here BiGRU is a bidirectional GRU cell, xi is a word embedding vector corresponding

to the i-th word wi, and hEi is a hidden vector encoding the current word and its

context. We use the pairs [hEi ;xi], the concatenation of hEi and xi, as the encoded

text feature.

2.3.2 Object and Attribute Decoders

At each step t, our model predicts the next object ot from an object vocabulary V

and its k attributes {Rk
t }, using text feature {[hEi ;xi]} and the current canvas Bt as

input. For this part, we use a convolutional network (CNN) Ω to encode Bt into a

C ×H ×W feature map, representing the current scene state. We model the history

of the scene states {hDt } with a convolutional GRU (ConvGRU):

hDt = ConvGRU(Ω(Bt), h
D
t−1), (2.2)

The initial hidden state is created by spatially replicating the last hidden state of

the text encoder. Here hDt provides an informative representation of the temporal
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dynamics of each spatial (grid) location in the scene. Since this representation might

fail to capture small objects, a one-hot vector of the object predicted at the previous

step ot−1 is also provided as input to the downstream decoders. The initial object is

set as a special start-of-scene token.

Attention-based Object Decoder: Our object decoder is an attention-based

model that outputs the likelihood scores of all possible objects in an object vocab-

ulary V . It takes as input the recurrent scene state hDt , text features {[hEi ;xi]} and

the previously predicted object ot−1:

uot = AvgPooling(Ψo(hDt )), (2.3)

cot = Φo([uot ; ot−1], {[hEi ;xi]}), (2.4)

p(ot) ∝ Θo([uot ; ot−1; cot ]), (2.5)

here Ψo is a convolutional network with spatial attention on hDt , similar as in [141].

The goal of Ψo is to collect the spatial contexts necessary for the object prediction,

e.g. what objects have already been added. The attended spatial features are then

fused into a vector uot by average pooling. Φo is the text-based attention module,

similar as in [80], which uses [uot ; ot−1] to attend to the language context {[hEi ;xi]} and

collect the context vector cot . Ideally, cot encodes information about all the described

objects that have not been added to the scene thus far. Θo is a two-layer perceptron

predicting the likelihood of the next object p(ot) from the concatenation of uot , ot−1,

and cot , using a softmax function.

Attention-based Attribute Decoder The attribute set corresponding to the ob-

ject ot can be predicted similarly. We use another attention module Φa to “zoom in”

the language context of ot, extracting a new context vector cat . Compared with cot

which may contain information of all the objects that have not been added yet, cat

focuses more specifically on contents related to the current object ot. For each spatial
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location in hDt , the model predicts a location likelihood lt, and a set of attribute like-

lihoods {Rk
t }. Here, possible locations are discretized into the same spatial resolution

of hDt . In summary, we have:

cat = Φa(ot, {[hEi ;xi]}) (2.6)

uat = Ψa([hDt ; cat ]) (2.7)

p(lt, {Rk
t }) = Θa([uat ; ot; c

a
t ]), (2.8)

Φa is a text-based attention module aligning ot with the language context {[hEi ;xi]}.

Ψa is an image-based attention module aiming to find an affordable location to add ot.

Here cat is spatially replicated before concatenating with hDt . The final likelihood map

p(lt, {Rk
t }) is predicted by a convolutional network Θa, followed by softmax classifiers

for lt and discrete {Rk
t }. For continuous attributes {Rk

t } such as the appearance vector

Qt for patch retrieval (next section), we normalize the output using an `2-norm.

2.3.3 Foreground Patch Embedding

We predict a particular attribute: an appearance vector Qt, only for the model trained

to generate synthetic image composites (i.e. images composed of patches retrieved

from other images). As with other attributes, Qt is predicted for every location in

the output feature map which is used at test time to retrieve similar patches from

a pre-computed collection of object segments from other images. We train a patch

embedding network using a CNN which reduces the foreground patch in the target

image into a 1D vector Ft. The goal is to minimize the `2-distance between Qt and

Ft using a triplet embedding loss [38] that encourages a small distance ||Qt, Ft||2 but

a larger distance with other patches ||Qt, Fk||2. Here Fk is the feature of a ”negative”
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patch, which is randomly selected from the same category of Ft:

Ltriplet(Qt, Ft) = max{||Qt, Ft||2 − ||Qt, Fk||2 + α, 0} (2.9)

α is a margin hyper-parameter.

2.3.4 Objective

The loss function for a given example in our model with reference values (ot, lt, {Rk
t }, Ft)

is:

L =− wo
∑
t

log p(ot)− wl
∑
t

log p(lt)

−
∑
k

wk
∑
t

log p(Rk
t ) + we

∑
t

Ltriplet(Qt, Ft)

+ wOa L
O
attn + wAa L

A
attn,

where the first three terms are negative log-likelihood losses corresponding to the ob-

ject, location, and discrete attribute softmax classifiers. Ltriplet is a triplet embedding

loss optionally used for the synthetic image generation task. L∗attn are regularization

terms inspired by the doubly stochastic attention module proposed in [141]. Here

L∗attn =
∑

i[1−
∑

t α
∗
ti]

2 where {αoti} and {αati} are the attention weights from Φo and

Φa respectively. These regularization terms encourage the model to distribute the at-

tention across all the words in the input sentence so that it will not miss any described

objects. Finally, wo, wl, {wk}, we, wOa , and wAa are hyperparameters controlling the

relative contribution of each loss.

Details for different scene generation tasks In the Abstract Scenes generation

task, Bt is represented directly as an RGB image. In the layout generation task, Bt is

a 3D tensor with a shape of (V , H,W ), where each spatial location contains a one-hot
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vector indicating the semantic label of the object at that location. Similarly, in the

synthetic image generation task, Bt is a 3D tensor with a shape of (3V , H,W ), where

every three channels of this tensor encode the color patches of a specific category from

the background canvas image. For the foreground embedding module, we adopt the

canvas representation in [96] to encode the foreground patch for simplicity. As the

composite images may exhibit gaps between patches, we also leverage the stitching

network in [96] for post-processing. Note that the missing region may also be filled

by any other inpainting approaches.

2.4 Experiments

We conduct experiments on three text-to-scene tasks: (I) constructing abstract scenes

of clip-arts in the Abstract Scenes [154] dataset; (II) predicting semantic object lay-

outs of real images in the COCO [74] dataset; and (III) generating synthetic image

composites in the COCO [74] dataset.

Task (I): Clip-art Generation on Abstract Scenes. We use the dataset intro-

duced by [154], which contains over 1,000 sets of 10 semantically similar scenes of

children playing outside. The scenes are composed of 58 clip-art objects. The at-

tributes we consider for each clip-art object are the location, size (|Rsize| = 3), and

the direction the object is facing (|Rdirection| = 2). For the person objects, we also

explicitly model the pose (|Rpose| = 7) and expression (|Rexpression| = 5). There are

three sentences describing different aspects of a scene. After filtering empty scenes,

we obtain 9997 samples. Following [154], we reserve 1000 samples as the test set and

497 samples for validation.

Task (II): Semantic Layout Generation on COCO. The semantic layouts con-

tain bounding boxes of the objects from 80 object categories defined in the COCO [74]

dataset. We use the val2017 split as our test set and use 5000 samples from the
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train2017 split for validation. We normalize the bounding boxes and order the ob-

jects from bottom to top as the y-coordinates typically indicate the distances be-

tween the objects and the camera. We further order the objects with the same

y-coordinate based on their x-coordinates (from left to right) and categorical in-

dices. The attributes we consider are location, size (|Rsize| = 17), and aspect ratio

(|Raspect ratio| = 17). For the size attribute, we discretize the normalized size range

evenly into 17 scales. We also use 17 aspect ratio scales, which are { 1
i+1
}8
i=1 and

{i+ 1}8
i=0.

Task (III): Synthetic Image Generation on COCO. We demonstrate our ap-

proach by generating synthetic image composites given input captions in COCO [74].

For fair comparisons with alternative approaches, we use the val2014 split as our test

set and use 5000 samples from the train2014 split for validation. We collect segmented

object and stuff patches from the training split. The stuff segments are extracted from

the training images by taking connected components in corresponding semantic label

maps from the COCO-Stuff annotations [50]. For object segments, we use all 80 cat-

egories defined in COCO. For stuff segments, we use the 15 super-categories defined

in [50] as the class labels, which results in 95 categories in total. We order the patches

as in the layout generation task but when composing the patches, we always render

the object patches in front of the stuff patches. In our experiment, Qt and Ft have a

dimension of 128.

2.4.1 Network Architecture

Text Encoder

We use the same network architecture for the text encoders in all our experiments,

which consists of a single layer bidirectional recurrent network with Gated Recurrent

Units (GRUs). It takes a linear embedding of each word as input and has a hidden
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dimension of 256 for each direction. We initialize the word embedding network with

the pre-trained parameters from GloVe [93]. The word embedding vectors are kept

fixed for abstract scene and semantic layout generations but finetuned for synthetic

image generation.

Scene Encoder

The scene encoder Ω for abstract scene generation is an Imagenet (ILSVRC) pre-

trained ResNet-34 [47]. Its parameters are fixed in all the experiments on Abstract

Scene [154]. For layout and synthetic image generations, we develop our own scene

encoders as the inputs for these tasks are not RGB images.

Table 2.1 and 2.2 show the architecture details. Here |V| is the size of the categori-

cal vocabulary. In the layout generation task, |V| is 83, including 80 object categories

in COCO [74] and three special categorical tokens: sos, eos, pad, representing the

start and end points for sequence generation and the padding token. For synthetic

image generation, |V| is 98, including 80 object categories in COCO [74], 15 super-

categories for stuffs in COCO-stuff [50] and the special categorical tokens: sos, eos,

pad.

The input for synthetic image generation has a layer-wise structure where every

three channels contain the color patches of a specific category from the background

canvas image. In this case, the categorical information of the color patches can be

easily learned. On the other hand, since the input is a large but sparse volume with

very few non-zero values, to reduce the number of parameters and memory usage, we

use a depth-wise separable convolution as the first layer of Ω (index (2)), where each

group of three channels (g3) is convolved to one single channel in the output feature

map.
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Index Input Operation Output Shape

(1) - Input |V| × 64 × 64
(2) (1) Conv(7 × 7, |V| → 128, s2) 128 × 32 × 32
(3) (2) Residual(128 → 128, s1) 128 × 32 × 32
(4) (3) Residual(128 → 256, s2) 256 × 16 × 16
(5) (4) Bilateral upsampling 256 × 28 × 28

Table 2.1: Architecture of our scene encoder Ω for layout generation. We follow the
notation format used in [56]. Here |V| is the size of the categorical vocabulary. The
input and output of each layer have a shape of C × H × W , where C is the number
of channels and H and W are the height and width. The notation Conv(K × K, Cin
→ Cout) represents a convolutional layer with K × K kernels, Cin input channels and
Cout output channels. The notation s2 means the convolutional layer has a stride of
2. The notation Residual(Cin → Cout) is a residual module consisting of two 3 × 3
convolutions and a skip-connection layer. In the first residual block (index (3)), the
skip-connection is an identity function and the first convolution has a stride of 1 (s1).
In the second residual block (index (4)), the skip-connection is a 1 × 1 convolution
with a stride of 2 (s2) and the first convolution also has a stride of 2 to downsample
the feature map. Here all the convolutional layers are followed by a ReLU activation.

Convolutional Recurrent Module

The scene recurrent module for all our experiments is a convolutional GRU net-

work [155] with one ConvGRU cell. Each convolutional layer in this module has a

3 × 3 kernel with a stride of 1 and a hidden dimension of 512. We pad the input

of each convolution so that the output feature map has the same spatial resolution

as the input. The hidden state is initialized by spatially replicating the last hidden

state from the text encoder.

Object and Attribute Decoders

Table 2.3 shows the architectures for our object and attribute decoders. Ψo and Ψa

are the spatial attention modules consisting of two convolutional layers. Θo is a two-

layer perceptron predicting the likelihood of the next object using a softmax function.

Θa is a four-layer CNN predicting the likelihoods of the location and attributes of

the object. The output of Θa has 1 +
∑

k |Rk| channels, where |Rk| denotes the
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Index Input Operation Output Shape

(1) - Input 3|V| × 128 × 128
(2) (1) Conv(7 × 7, 3|V| → |V|, s2, g3) |V| × 64 × 64
(3) (2) Residual(|V| → |V|, s1) |V| × 64 × 64
(4) (3) Residual(|V| → 2|V|, s1) 2|V| × 64 × 64
(5) (4) Residual(2|V| → 2|V|, s1) 2|V| × 64 × 64
(6) (5) Residual(2|V| → 3|V|, s2) 3|V| × 32 × 32
(7) (6) Residual(3|V| → 3|V|, s1) 3|V| × 32 × 32
(8) (7) Residual(3|V| → 4|V|, s1) 4|V| × 32 × 32

Table 2.2: Architecture of our scene encoder Ω for synthetic image generation. The
notations are in the same format of Table 2.1. The first convolution (index (2)) is a
depthwise separable convolution where each group of three channels (g3) is convolved
to one single channel in the output feature map. All the convolutional layers are
followed by a LeakyReLU activation with a negative slope of 0.2.

discretized range of the k-th attribute, or the dimension of the appearance vector Qt

used as the query for patch retrieval for synthetic image generation. The first channel

of the output from Θa predicts the location likelihoods which are normalized over the

spatial domain using a softmax function. The rest channels predict the attributes for

every grid location. During training, the likelihoods from the ground-truth locations

are used to compute the loss. At each step of the test time, the top-1 location is

first sampled from the model. The attributes are then collected from this sampled

location. The text-based attention modules are defined similarly as in [80]. When

denoting di = [hEi ;xi], s
o
t = [uot ; ot−1], and sat = ot, Φo and Φa are defined as:

c∗t = Φ∗(s∗t , {di}) =
∑
i

exp(score(s∗t , di))∑
j exp(score(s∗t , dj))

· di

score(s∗t , dk) = (s∗t )
ᵀW ∗

Φdk, ∗ ∈ o, a

Here, W o
Φ and W a

Φ are trainable matrices which learn to compute the attention scores

for collecting the context vectors cot and cat .

These architecture designs are used for all the three generation tasks. The only

difference is the grid resolution (H, W). For abstract scene and layout generations,

23



Module Index Input Operation Output Shape

Ψo (1) - Conv(3×3, 512→256) 256 × H × W
(2) (1) Conv(3×3, 256→1) 1 × H × W

Ψa (1) - Conv(3×3, 1324→256) 256 ×H ×W
(2) (1) Conv(3×3, 256→1) 1 × H × W

Θo (1) - Linear((1324 + |V|)→512) 512
(2) (1) Linear(512→ |V|) |V|

Θa (1) - Conv(3×3, (1324+|V|)→512) 512 × H × W
(2) (1) Conv(3×3, 512→256) 256 × H × W
(3) (2) Conv(3×3, 256→256) 256 × H × W
(4) (3) Conv(3×3, 256→(1 +

∑
k |Rk|)) (1 +

∑
k |Rk|) × H × W

Table 2.3: Architectures for the object and attribute decoders. The notation Lin-
ear(Cin → Cout) represents a fully connected layer with Cin input channels and Cout
output channels. All layers, except the last layer of each module, are followed by a
ReLU activation.

(H, W) = (28, 28). For synthetic image generation, (H, W) = (32, 32). Note that,

although our model uses a fixed grid resolution, the composition can be performed

on canvases of different sizes.

Foreground Patch Embedding

The foreground segment representation we use is similar with the one in [96], where

each segment P is represented by a tuple (P color, Pmask, P context). Here P color ∈

R3×H×W is a color patch containing the segment, Pmask ∈ {0, 1}1×H×W is a binary

mask indicating the foreground region of P color, P context ∈ {0, 1}|V|×H×W is a semantic

map representing the semantic context around P . The context region of P is obtained

by computing the bounding box of the segment and enlarging it by 50% in each

direction.

Table 2.4 shows the architecture of our foreground patch embedding network.

Here, the concatenation of (P color, Pmask, P context) is fed into a five-layer convolutional

network which reduces the input into a 1D feature vector Fs (index (7)). As this

convolutional backbone is relatively shallow, Fs is expected to encode the shape,

appearance, and context, but may not capture the fine-grained semantic attributes of

24



Index Input Operation Output Shape

(1) - Input layout (|V| + 4) × 64 × 64
(2) (1) Conv(2 × 2, (|V| + 4) → 256, s2) 256 × 32 × 32
(3) (2) Conv(2 × 2, 256 → 256, s2) 256 × 16 × 16
(4) (3) Conv(2 × 2, 256 → 256, s2) 256 × 8 × 8
(5) (4) Conv(2 × 2, 256 → 256, s2) 256 × 4 × 4
(6) (5) Conv(2 × 2, 256 → 128, s2) 256 × 2 × 2
(7) (6) Global average pooling 256

(8) - Input patch feature 2048
(9) (7)(8) Linear((256 + 2048) → 128) 128

Table 2.4: Architecture of our foreground patch embedding network for synthetic
image generation. All the convolutional layers are followed by a LeakyReLU activation
with a negative slope of 0.2.

P . In our experiments, we find that incorporating the knowledge from the pre-trained

deep features of P color can help retrieve segments associated with strong semantics,

such as the ”person” segments. Therefore, we also use the pre-trained features Fd

(index (8)) of P color from the mean pooling layer of ResNet152 [47], which has 2048

features. The final vector Ft is predicted from the concatenation of (Fs, Fd) by a

linear regression.

Inpainting Network

Our inpainting network has the same architecture as the image synthesis module

proposed in [96], except that we exclude all the layer-normalization layers. To gen-

erate the simulated canvases on COCO, we follow the procedures proposed in [96],

but make minor modifications: (1) we use the trained embedding patch features to

retrieve alternative segments to stencil the canvas, instead of the intersection-over-

union based criterion used in [96]. (2) we do not perform boundary elision for the

segments as it may remove fine grained details of the segments such as human faces.
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Figure 2.5: Evaluation metrics for the abstract scene generation task: the green dots
show the common U-obj between the reference (B) and the generated abstract scene
(A), the blue dots show the missing and mispredicted objects. Similarly, the yellow
lines show the common B-obj and the red lines show the missing and mispredicted
B-obj. The U-obj precision/recall for this example is 0.667/0.667, the B-obj
precision/recall is 1.0/0.5.

2.4.2 Optimization

For optimization we use Adam [61] with an initial learning rate of 5e−5. The learning

rate is decayed by 0.8 every 3 epochs. We clip the gradients in the back-propagation

such that the norm of the gradients is not larger than 10. Models are trained until

validation errors stop decreasing. For abstract scene generation, we set the hyperpa-

rameters (wo, wl, wpose, wexpression, wsize, wdirection, wOa , wAa ) to (8,2,2,2,1,1,1,1). For

semantic layout generation, we set the hyperparameters (wo, wl, wsize, waratio, w
O
a ,

wAa ) to (5,2,2,2,1,0). For synthetic image generation, we set the hyperparameters (wo,

wl, wsize, waratio, w
O
a , wAa , we, α) to (5,2,2,2,1,0,10,0.5). The hyperparameters are

chosen to make the losses of different components comparable. Exploration of the

best hyperparameters is left for future work.

2.4.3 Evaluation

Automatic Metrics. Our tasks pose new challenges in evaluating the models as

(1) the three types of scene representations are quite different from each other; and
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(2) there is no absolute one-to-one correspondence between a sentence and a scene.

For the abstract scene generation task, we draw inspiration from the evaluation met-

rics applied in machine translation [11] but we aim at aligning multimodal visual-

linguistic data instead. To this end, we propose to compute the following metrics:

precision/recall on single objects (U-obj), “bigram” object pairs (B-obj); classifi-

cation accuracies for poses, expressions; Euclidean distances (defined as a Gaussian

function with a kernel size of 0.2) for normalized coordinates of U-obj and B-obj.

A “bigram” object pair is defined as a pair of objects with overlapping bounding

boxes as illustrated in Figure 2.5.

In the layout generation experiment, it is harder to define evaluation metrics

given the complexity of real world object layouts. Inspired by [51], we employ cap-

tion generation as an extrinsic evaluation. We generate captions from the semantic

layouts using [145] and compare them back to the original captions used to gener-

ate the scenes. We use commonly used metrics for captioning such as BLEU [90],

METEOR [11], ROUGE L [73], CIDEr [131] and SPICE [2].

For synthetic image generation, we adopt the Inception Score (IS) metric [108]

which is commonly used in recent text to image generation methods. However, as

IS does not evaluate the correspondence between images and captions, we also em-

ploy an extrinsic evaluation using image captioning using the Show-and-Tell caption

generator [133] as in [51].

Baselines. For abstract scene generation, we run comparisons with [154]. We also

consider variants of our full model: (1) Text2Scene (w/o attention): a model without

any attention module. In particular, we replace Eq. 2.3 with a pure average pooling

operation on hDt , discard cot in Eq. 2.5, discard cat and replace uat with hDt in Eq. 2.8.

(2) Text2Scene (w object attention): a model with attention modules for object

prediction but no dedicated attention for attribute prediction. Specifically, we replace
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Figure 2.6: Screen shots of the user interfaces for our human subject studies on Ama-
zon Mechanical Turk. (A) User interface for the evaluation study of the abstract scene
generation experiment; (B) User interface for the evaluation study of the synthetic
image generation experiment.

(uat , c
a
t ) with (hDt , cot ) in Eq. 2.8. (3) Text2Scene (w both attentions): a model

with dedicated attention modules for both object and attribute predictions but no

regularization. For synthetic image generation, we compare our approach with a

broad range of state-of-the-art methods, including [51, 56, 101, 143, 148, 150].

Human Evaluations. We also conduct human evaluations using crowdsourcing on

100 groups of clip-art scenes generated for the Abstract Scene dataset using random

captions from the test split. Human annotators are asked to determine whether an

input text is a true statement given the generated scene (entailment). Each scene in

this dataset is associated with three sentences that are used as the statements. Each

sentence-scene pair is reviewed by three annotators to determine if the entailment is

true, false or uncertain. Ignoring uncertain responses, we use the ratio of
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Methods
U-obj B-obj

Pose Expr
U-obj B-obj

Prec Recall Prec Recall Coord Coord
Zitnick et al. [154] 0.722 0.655 0.280 0.265 0.407 0.370 0.449 0.416
Text2Scene (w/o attention) 0.665 0.605 0.228 0.186 0.305 0.323 0.395 0.338
Text2Scene (w object attention) 0.731 0.671 0.312 0.261 0.365 0.368 0.406 0.427
Text2Scene (w both attentions) 0.749 0.685 0.327 0.272 0.408 0.374 0.402 0.467
Text2Scene (full) 0.760 0.698 0.348 0.301 0.418 0.375 0.409 0.483

Table 2.5: Quantitative evaluation on the Abstract Scenes dataset. Our full model
performs better in all metrics except U-obj Coord which measures exact object coor-
dinates. It also shows that our sequential attention approach is effective.

Methods Scores ≥ 1 ≥ 2
Obj-Single Obj-Pair Location Expression
sub-pred sub-pred-obj pred:loc pred:expr

Reference 0.919 1.0 0.97 0.905 0.88 0.933 0.875
Zitnick et al. [154] 0.555 0.92 0.49 0.53 0.44 0.667 0.625
Text2Scene (w/o attention) 0.455 0.75 0.42 0.431 0.36 0.6 0.583
Text2Scene (full) 0.644 0.94 0.62 0.628 0.48 0.667 0.708

Table 2.6: Human evaluation on Abstract Scenes. Each scene is generated from three
textual statements. Users are asked to rate if the generated scene validates each input
statement. Our method generates scenes that abide by at least one of the statements
94% of the times, and by at least two statements 64%, and is superior in all types of
statements except Location.

the sentence-scene pairs marked as true for evaluation. Figure 2.6 (A) shows the

user interface of this study.

We also perform predicate-argument semantic frame analysis [18] on our results.

Using the semantic parser from [154], we subdivide the sentences as: sub-pred cor-

responding to sentences referring to only one object, sub-pred-obj corresponding

to sentences referring to object pairs with semantic relations, pred:loc correspond-

ing to sentences referring to locations, and pred:pa corresponding to sentences

mentioning facial expressions.

For synthetic image generation we use a similar human evaluation as in [96]. We

compare our method against SG2IM [56], HDGAN [150] and AttnGAN [143]. We

resize our generated images to the same resolutions as in these alternative methods,

64 × 64 for SG2IM [56], 256 × 256 for HDGAN [150] and AttnGAN [143]. For each
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Figure 2.7: Examples of generated abstract scenes. The first column shows the input
text, and the last column shows the reference true scene from the dataset.

sentence randomly selected from the test set, we present images generated by our

method and a competing method and allow the user to choose the one which better

represents the text. We collect results for 500 sentences. For each sentence, we collect

responses from 5 different annotators. Figure 2.6 (B) shows the user interface of this

study.

2.4.4 Results and Discussion

Abstract Scenes and Semantic Layouts: Table 2.5 shows quantitative results

on Abstract Scenes. Text2Scene improves over [154] and our variants on all metrics

except U-obj Coord. Human evaluation results on Table 2.6 confirm the quality

of our outputs, where Scores are the percentage of sentence-scene pairs with a

true entailment; (≥ 1) (≥ 2) indicate if our method produces scenes that entailed

30



Methods B1 B2 B3 B4 METEOR ROUGE CIDEr SPICE
Captioning from True Layout [145] 0.678 0.492 0.348 0.248 0.227 0.495 0.838 0.160
Text2Scene (w/o attention) 0.591 0.391 0.254 0.169 0.179 0.430 0.531 0.110
Text2Scene (w object attention) 0.591 0.391 0.256 0.171 0.179 0.430 0.524 0.110
Text2Scene (w both attentions) 0.600 0.401 0.263 0.175 0.182 0.436 0.555 0.114
Text2Scene (full) 0.615 0.415 0.275 0.185 0.189 0.446 0.601 0.123

Table 2.7: Quantitative evaluation on the layout generation task. Our full model
generates more accurate captions from the generated layouts than the baselines. We
also include caption generation results from ground truth layouts as an upper bound
on this task.

Methods IS B1 B2 B3 B4 METEOR ROUGE CIDEr SPICE
Real image 36.00±0.7 0.730 0.563 0.428 0.327 0.262 0.545 1.012 0.188
GAN-INT-CLS [100] 7.88±0.07 0.470 0.253 0.136 0.077 0.122 – 0.160 –
SG2IM* [56] 6.7±0.1 0.504 0.294 0.178 0.116 0.141 0.373 0.289 0.070
StackGAN [148] 10.62±0.19 0.486 0.278 0.166 0.106 0.130 0.360 0.216 0.057
HDGAN [150] 11.86±0.18 0.489 0.284 0.173 0.112 0.132 0.363 0.225 0.060
Hong et al [51] 11.46±0.09 0.541 0.332 0.199 0.122 0.154 – 0.367 –
AttnGan [143] 25.89±0.47 0.640 0.455 0.324 0.235 0.213 0.474 0.693 0.141
Text2Scene (w/o inpaint.) 22.33±1.58 0.602 0.412 0.288 0.207 0.196 0.448 0.624 0.126
Text2Scene (w inpaint.) 24.77±1.59 0.614 0.426 0.300 0.218 0.201 0.457 0.656 0.130

Table 2.8: Quantitative evaluation on the synthetic image generation task. Our model
is superior on automated metrics to all competing approaches except AttnGan, even
without post-processing. *The result of SG2IM is evaluated on the validation set
defined in [56], which is a subset of the COCO val2014 split.

at least one (or two) out of three statements. Text2Scene also shows better results

on statements with specific semantic information such as Obj-single, Obj-pair,

and Expression, and is comparable on Location statements. As a sanity check,

we also test reference true scenes provided in the Abstract Scenes dataset (first row).

Results show that it is more challenging to generate the semantically related object

pairs. Overall, the results also suggest that our proposed metrics correlate with

human judgment on the task.

Figure 2.7 shows qualitative examples of our models on Abstract Scenes in com-

parison with baseline approaches and the reference scenes. These examples illustrate

that Text2Scene is able to capture semantic nuances such as the spatial relation be-

tween two objects (e.g., the bucket and the shovel are correctly placed in Jenny’s

hands in the last row) and object locations (e.g., Mike is on the ground near the
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Figure 2.8: Generated layouts from input captions and generated captions from the
predicted layouts (best viewed in color). Our model successfully predicts the presence
(purple text) and number of objects (blue text), and their spatial relations (red text).

Ratio
Text2Scene > SG2IM [56] 0.7672
Text2Scene > HDGAN [150] 0.8692
Text2Scene > AttnGAN [143] 0.7588

Table 2.9: Two-alternative forced-choiced evaluation on the synthetic image genera-
tion task against competing methods.

swing set in the last row).

Table 2.7 shows an extrinsic evaluation on the layout generation task. We perform

this evaluation by generating captions from our predicted layouts. Results show our

full method generates the captions that are closest to the captions generated from true

layouts. Qualitative results in Figure 2.8 also show that our model learns important

visual concepts such as the presence and number of object instances, and their spatial

relations.

Synthetic Image Composites: Table 2.8 shows evaluation of synthetic scenes

using automatic metrics. Text2Scene without any post-processing already outper-
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Figure 2.9: Qualitative examples of synthetic image generation (best viewed in color).
The first column shows input captions with manually highlighted objects (purple),
counts (blue) and relations (red). The second columns shows the true images.
Columns in the middle show competing approaches. The last two columns show
the outputs of our model before and after pre-processing.

forms all previous methods by large margins except AttnGAN [143]. As our model

adopts a composite image generation framework without adversarial training, gaps

between adjacent patches may result in unnaturally shaded areas. We observe that,

after performing a regression-based inpainting [96], the composite outputs achieve

consistent improvements on all automatic metrics. We posit that our model can be

further improved by incorporating more robust post-processing or in combination

with GAN-based methods. On the other hand, human evaluations show that our

method significantly outperforms alternative approaches including AttnGAN [143],

demonstrating the potential of leveraging realistic image patches for text-to-image

generation. It is important to note that SG2IM [56] and Hong et al [51] also use seg-

ment and bounding box supervision – as does our method, and AttnGan [143] uses
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Figure 2.10: Example synthetic images and the source images from which the patch
segments are retrieved for compositing. For each synthetic image, we show three
source images for clarity.

an Imagenet (ILSVRC) pretrained Inceptionv3 network. In addition, as our model

contains a patch retrieval module, it is important that the model does not generate

a synthetic image by simply retrieving patches from a single training image. On av-

erage, each composite image generated from our model contains 8.15 patches from

7.38 different source images, demonstrating that the model does not simply learn a

global image retrieval. Fig. 2.9 shows qualitative examples of the synthetic image

composites. We also present in Fig. 2.10 the generated images and the corresponding

source images from which the patch segments are retrieved for compositing. For each

generated image, we show three source images for clarity. The examples illustrate

that our model learns not only the presence and spatial layout of objects, but also

the semantic knowledge that helps retrieve segments in similar contexts. Since our
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Figure 2.11: Comparing Text2Scene with state-of-the-art approaches on an uncom-
mon example. While SG2IM [56], HDGAN [150], AttnGAN [143], all struggle with
this example, Text2Scene successfully learns the presence of the objects “cat” and
“skateboard” as well as their relation.

model learns about objects and relations separately, we also observed that it is often

able to generalize to uncommon situations. Fig. 2.11 provides the result of generating

a composite image from the caption “A cat curled up on a skateboard in a living

room” using Text2Scene. This example is also discussed in Section 2.1. It is shown

that the previous state-of-the-art approaches, e.g. SG2IM [56], HDGAN [150], At-

tnGAN [143], struggle with this example, while Text2Scene successfully learns the

presence of the objects “cat” and “skateboard” as well as their relation.

2.5 Summary

In this chapter, we present a novel sequence-to-sequence model for generating compo-

sitional scene representations from visually descriptive language. We provide exten-

sive quantitative analysis of our model for different scene generation tasks on datasets

from different domains: Abstract Scenes [154] and COCO [74]. Experimental results

demonstrate the capacity of our model to capture finer semantic concepts from visu-

ally descriptive text and generate complex scenes.
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Chapter 3

Learning Compositional Text

Representations for Interactive

Image Retrieval

3.1 Introduction

In the previous chapter, we explore learning compositional representations of images.

In this chapter, we focus more on learning compositional representations of text. In

particular, we aim to integrate multiple rounds of text queries into an efficient and

effective representation for interactive image retrieval.

Retrieving images from text-based queries has been an active area of research that

requires some level of visual and textual understanding. Significant improvement has

been achieved over the past years with advances in representation learning but finding

very specific images with detailed specifications remains challenging. A common

way of the specification is through natural language queries, where a user inputs a

description of the image and obtains a set of results. We focus on a common scenario

where a user is trying to find an exact image, or similarly where the user has a very
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Figure 3.1: An example of the interactive image retrieval with our Drill-down model,
where a user generated query (Ut) progressively refines the search results (St) until
the target image is among top search results.

specific idea of a target image, or is deciding on-the-fly while querying. We present

empirical evidence that users are much more successful if they are allowed to refine

their search results with subsequent textual queries. Users might start with a general

query about the “concept” of the image they have in mind and then “drill down” onto

more specific descriptions of objects or attributes in the image to refine the results.

Among previous efforts in image retrieval, a promising paradigm is to learn a

visual-semantic embedding by minimizing the distance between a target image and

an input textual query using a joint feature space. Pioneering approaches such as [35,

62, 69, 129, 134, 140] have demonstrated remarkable performance on large scale

datasets such as Flickr30K [95] and COCO [74], and domain-specific tasks such as

outfit composition [46]. However, we find that these methods are limited in their

capacity for retrieving highly specific images, because it is either difficult for users

to be specific enough with a single query or users may not have the full picture in

mind beforehand. We show an example of this type of interaction in Fig. 3.1. While

single-query retrieval might be more suited for domains such as product search where

images typically contain only one object, requiring users to describe a whole scene in

one sentence might be too demanding. More recently, dialog based search has been

proposed to overcome some of the limitations of single-query retrieval [29, 42, 72,

117].

In this work, we propose Drill-down [121], an interactive image search framework
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for retrieving complex scenes, which learns to capture the fine-grained alignments

between images and multiple text queries. Our work is inspired by the observations

that: (1) user queries at each turn may not exhaustively describe all the details of the

target image, but focus on some local regions, which provide a natural decomposition

of the whole scene. Therefore, we explicitly represent images as a list of object/stuff

level features extracted from a pre-trained object detector [102]. This is also in

line with recent research [69, 140] on learning region-phrase alignments for single-

query methods; (2) complex scenes contain multiple objects that might share the

same feature subspace. Particularly, existing state representations of sequential text

queries, such as the hidden states of a RNN, condense all image properties in a

single state vector, which makes it difficult to distinguish entities sharing the same

feature subspace, such as multiple person instances. To address this, we propose

to maintain a set of state vectors, encouraging each of the vectors to encode text

queries corresponding to a distinct image region. Figure 3.2 shows an overview of our

approach, images are represented with local feature representations, and the query

state is represented by a fixed set of vectors that are selectively updated with each

subsequent query.

We demonstrate the effectiveness of our approach on the Visual Genome dataset [65]

in two scenarios: automatic image retrieval using region captions as queries, and in-

teractive image retrieval with real queries from human evaluators. In both cases, our

experimental results show that the proposed model outperforms existing methods,

such as a hierarchical recurrent encoder model [110], while using less computational

budget.

Our main contributions can be summarized as follows:

• We propose Drill-down, an interactive image search approach with multiple

round queries which leverages region captions as a form of weak supervision
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during training.

• We conduct experiments on a large-scale natural image dataset: Visual Genome [65],

and demonstrate superior performance of our model on both simulated and real

user queries;

• We show that our model, while producing a compact representation, outper-

forms competing baseline methods by a significant margin.

3.2 Related Work

Text-based image retrieval has been an active research topic for decades [20, 21, 106].

Prominent more contemporary works have recognized the need for richer user inter-

actions in order to obtain higher quality results [5, 63, 64, 111]. Siddiquie et al [111]

proposed an approach to use multiple query attributes. Kovashka et al [63, 64] further

proposed using user feedback based on individual visual attributes to progressively

improve search results. Arandjelovic et al [5] proposed a multiple query retrieval sys-

tem that was used for querying specific objects within a large set of images. These

works show that multiple independent queries generally outperform methods that

jointly model the input set with a single query. Our work builds on these previous

ideas but does not use an explicit notion of attributes and aims to support more

general input text queries.

Remarkable results have been achieved by recent methods based on deep learn-

ing [35, 62, 134]. These methods typically explore mapping a text query and the

target image into a common feature space. Learned feature representations are desig-

nated to capture both visual and semantic information in the same embedding space.

In contrast, besides supporting multiple rounds of queries, our approach also has a

richer region representation to explicitly map individual entities in images to textual
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phrases. Another line of recent inquiry are dialog based image search systems [42,

72]. Liao et al [72] proposed to aggregate multi-round user responses from trained

agents or human agents in order to iteratively refine a retrieved set of images using

a hierarchical recurrent encoder-decoder framework [110]. We follow a similar pro-

tocol, but we explore a more open-ended domain of images corresponding to scenes

depicting multiple objects. The method Guo et al [42] as in our work, used multiple

rounds of natural language queries, and proposed collecting relative image captions

as supervision for a product search task. In contrast, we pursue a weakly supervised

approach where we leverage an image dataset with region captions that are used to

simulate queries during training, thus bypassing the need to collect extra annota-

tions. We demonstrate that training with simulated queries is surprisingly effective

under human evaluations. As the hierarchical recurrent framework [110] was used

in most of the previous dialog based methods [28, 29, 42, 72, 117], we provide a re-

implementation of the hierarchical encoder (HRE) model with the queries as context

and use it as one of our baselines. Different from the previous dialog based methods

where the systems also provide textual responses, we explore a scenario where the

system only responses with retrieved images, so no decoder module is required in our

case.

Also relevant to our research are the existing works on learning image-word [45, 57,

69] or region-phrase [87] alignments for vision-language tasks. For instance, Karpa-

thy et al [57] proposed to learn a bidirectional image-sentence mapping by jointly

embedding fragments of images (objects) and sentences. The image fragments are

extracted using a pre-trained object detector, while the sentence fragments are ob-

tained using a dependency tree relation parser. Niu et al [87] extended this work by

jointly learning hierarchical relations between phrases and image regions in an itera-

tive refinement framework. Recently, Lee et al [69] developed a stacked cross attention

40



(1) red brick of fireplace

(2) china plates and glasses

…

(t-1) flowers on the dining 
table

(t) candle style chandelier 
hanging down from ceiling

Query Encoder

Queries

Faster
RCNN

!(#, %) Region
Features

Cross Modal Similarity

State Vectors (t)
GRU

'

(1) red brick of fireplace
(2) china plates and glasses
(3) group of three candle sticks 
on mantel
(4) flowers on the dining table
(5) candle style chandelier 
hanging down from ceiling

(6) wooden chairs on the carpet
New Query

State Vectors ()*+

GRU

Sentence Rep. ,)

State Vectors ()

Faster
RCNN

!(#, %)
Region

Features

Cross Modal Similarity

'

Figure 3.2: Overview of our model. Drill-down maintains a fixed set of state vectors
X, modeling the historical context of the user queries. Given a new query qt, our
model selects and updates one of the state vectors. The updated state vectors Xt

and image region features are then projected to a cross-modal embedding space to
measure the fine-grained alignment between each region-state pair.

network for word-region matching. Compared to these models, our proposed query

state encoding aims at integrating multiple round queries while still using a compact

representation of fixed size (i.e. independent of the number of queries), so that re-

trieval times do not depend on the number or the length of the queries. We show our

compact representation to be both efficient and effective for interactive image search.

More closely related to our work are Memory Networks [59, 118, 137], which

perform query and possibly update operations on a predefined memory space. In

contrast to this line of research, we explore a more challenging scenario where the

model needs to create and update the memory (i.e. the state vectors) on-the-fly

so as to maintain the states of the queries.

3.3 Method

Retrieving images with multi-round refinements offers the potential benefit of reduc-

ing the ambiguity of each query but also raises challenges on how to integrate user

queries from multiple rounds. Our model is inspired by the observation that users

naturally underspecify in their queries by referring to local regions of the target im-

age. We aim to capture these region level alignments by learning to map text queries
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{st}Tt=1 and the target image I into two sets of latent vectors {xi}Mi=1 and {vj}Nj=1

respectively, and computing the matching score of {st}Tt=1 and I by measuring and

aggregating fine-grained similarities between {xi}Mi=1 and {vj}Nj=1. Figure 3.2 provides

an overview of our model.

3.3.1 Image Representation

To identify candidate regions referred in the queries, we follow [3, 69]. For each

image I, we first detect the potential objects and salient stuff using the FasterRCNN

detector [102]. Corresponding features {cj} are extracted from the ROI pooling layer

of the detector. In practice, we leverage the object detector provided by [3], which is

pre-trained on Visual Genome [65] with 1600 predefined object and stuff classes. A

linear projection vj = WIcj + bI is applied to reduce {cj} into D-dimensional latent

vectors V = {vj}Nj=1,vj ∈ RD. Here N is the number of regions in each image. The

learnable parameters for the image representation {WI , bI} are denoted as θI .

3.3.2 Query Representation

Supporting multi-round retrieval requires a state representation for integrating the

queries from multiple turns. Solutions adopted by existing methods include applying

a single recurrent network to the concatenation of all queries [35] or a hierarchical

recurrent network [29, 42, 72, 117] modeling individual query and historical context

in separate recurrent modules. These approaches produce a single latent vector that

aggregates all queries. While state-of-the-art models [42, 72] show remarkable per-

formance on domains such as fashion product search, we demonstrate that currently

used single-vector representations are not the most effective for capturing complex

scenes with multiple objects. Specifically, as image features used in existing methods

are typically extracted from the penultimate layer of a pre-trained image classification
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or object detection model, input instances of the same or very similar categories acti-

vate the same feature units in the extracted feature space. Therefore, it is nontrivial

for these latent representations to encode and distinguish multiple entities from the

same or very similar categories (i.e. multiple person instances).

We propose to maintain a set of latent representations X = {xi}Mi=1,xi ∈ RD for

multiple turn queries. Here M is the number of latent vectors. This parameter repre-

sents the computational budget, since retrieval time will depend on the compactness

of this representation. While users might provide a general image description in the

first round of querying, subsequent queries typically describe more specific regions.

We aim at finding a good alignment between queries and image region representations

{vj}Nj=1. An ideal set of {xi}Mi=1 should learn to group and encode the input queries

into visually discriminative representations referring to distinct image regions. In the

remaining section, we first introduce the cross modal similarity formula used in our

model. We then explain how to update the state representations {xi}Mi=1 from the

queries {st}Tt=1 so as to optimize their matching score with the target image.

3.3.3 Cross Modal Similarity

To measure the similarity of X = {xi}Mi=1 and V = {vj}Nj=1, we first compute the

cosine similarity of each possible state-region pair (xi,vj): s(xi,vj) = xTi vj/‖xi‖‖vj‖,

where ‖.‖ denotes the L2 norm. Given s(xi,vj), we define the similarity s(xi, I)

between a state vector xi and the target image I as

s(xi, I) =
1

N

N∑
k=1

αiks(xi,vk), αik =
exp(s(xi,vk)/σ)∑N
j exp(s(xi,vj)/σ)

(3.1)

Here σ is a temperature hyper-parameter. Note that this formulation is similar

to measuring the cosine similarity of xi and a context vector
∑N

k=1 αikvk from an
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attention module [69, 79]. The cross modal similarity between the state vectors

X = {xi}Mi=1 and the target image I is defined as s(X, I) = 1
M

∑M
k=1 s(xk, I).

3.3.4 Query Encoding

Given a query input st at time t, our model maps each word token wk in st to an

E-dimensional vector via a linear projection: ek = WEwk, ek ∈ RE, k = 1 , · · · , K,

then generates the sentence embedding via a uni-directional recurrent network φ with

gated recurrent units (GRU) as: hk = φ(ek,hk−1),hk ∈ RD. The first hidden state of

φ is initialized as a zero vector, while the last hidden state is treated as the sentence

representation: qt = hK . We also explore using a bidirectional encoder but find no

improvement. Given the assumption that each text query describes a sub-region of

the image, each qt only updates a subset of the state vectors. In this work, we focus

on a simplified scenario where each qt only updates a single state vector xt−1
k ∈ Xt−1.

In detail, given the text query qt at time step t, our model samples xt−1
k from the

previous state vector set Xt−1 = {xt−1
i }Mi=1 based on the probability:

π(xt−1
k |X

t−1,qt) =



1(xt−1
k =∅)∑

j 1(xt−1
j =∅) if Xt−1 has an empty vector

exp(f(xt−1
k ,qt))∑

j exp(f(xt−1
j ,qt))

otherwise
(3.2)

f(xt−1
k ,qt) = W 3

π (δ(W 2
π (δ(W 1

π [xt−1
k ; qt] + b1

π)) + b2
π)) + b3

π, (3.3)

where 1(xt−1
j = ∅) is an indicator function which returns 1 if xt−1

j is an empty

vector and 0 otherwise. f(·) is a multilayer perceptron mapping the concatenation of

xt−1
k and qt into a scalar value. Here δ is the ReLU activation function, W 1

π ∈ RD×2D,
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W 2
π ,∈ RD×D, W 3

π ∈ R1×D, b1
π, b

2
π ∈ RD, b3

π ∈ R are model parameters. An empty

state vector is initialized with zero values. Ideally, an expressive sample policy should

learn to allocate a new state vector when necessary. However, we empirically find

it beneficial to update qt to an empty state vector whenever possible. Once xt−1
k is

sampled, we update this state vector using a single uni-directional gated recurrent

unit cell (GRU Cell) τ : xtk = τ(qt,xt−1
k ). Note that our formulation is similar to

a hard attention module [142]. Leveraging soft attention is possible, but it is more

computationally expensive as it would need to update all state vectors. Our state

vector update mechanism is inspired by the knowledge base methods with external

memory [72]. Our method can be interpreted as building a knowledge base memory

online from scratch, only from the query context, which can be trained end-to-end

with other modules. We denote the learnable parameters for the state vector update

policy function π(·) as θπ = {W 1
π ,W

2
π ,W

3
π , b

1
π, b

2
π, b

3
π}, and for the rest modules as

θq = {WE, φ, τ}.

3.3.5 End-to-end Training

Our model is trained to optimize θI , θπ and θq so as to achieve high similarity score

between the queries {st}Tt=1 and the target image I. Thus, we follow [35, 69] and

adopt a triplet loss on s(X, I) with hard negatives:

Le = argmin
θI ,θq

∑
X,I

`(X, I)

`(X, I) = max
I′

[α + s(X, I′)− s(X, I)]+ + max
X′

[α + s(X′, I)− s(X, I)]+

(3.4)

Here, α is a margin parameter, [·]+ ≡ max(·, 0). I′ and X′ are decoy images and state

vectors within the same mini-batch as the ground-truth pair (X, I) during training.

Note that Le will only optimize the parameters θI and θq. Directly optimizing θπ is
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difficult as sampling from Equation 3.2 is non-differentiable. We propose to train the

policy parameters via Reinforcement Learning (RL). Formally, the state in our RL

formulation is the set of state vectors Xt = {xti}Mi=1, and the action k ∈ {1, ...,M}

is to select the state vector xtk from Xt when fusing information from the embed-

ded query vector qt+1. The RL objective is to maximize the expected cumulative

discounted rewards, so in our case we define the reward function as the similarity

between the state vectors Xt and the image I, i.e. s(Xt, I). Note that our reward

function evaluates the potential similarity at all future time steps instead of only the

last step T , encouraging the model to find the target image with fewer turns.

Supervised pre-training As optimizing the sampling policy requires reward sig-

nals from the retrieval environment, we pre-train the model by optimizing Le with a

fixed policy: π(xt−1
k |Xt−1,qt) = 1(k ≡ t (mod M)), where 1(·) is an indicator func-

tion and M is the number of state vectors. Intuitively, this policy circularly updates

the state vectors in order.

Joint optimization Given the pre-trained environment, we then jointly optimize

the sampling policy and the other modules (i.e. θI , θq and θπ). Because the next state

Xt+1 is a deterministic function given the current state Xt and action k, we adopt the

policy improvement strategy from [42] to update the policy. Specifically, we estimate

the state-action value Q(Xt, k) =
∑T−1

t′=t γ
t′−ts(Xt′+1, I) for each state vector selection

action k by sampling one look-ahead trajectory. γ is the discount factor. The policy

is then optimized to predict the most rewarding action k∗ = argmaxkQ(Xt, k) via a

cross entropy loss:

Lπ = argmin
θπ

∑
Xt,qt+1

− log(π(xtk∗|Xt,qt+1; θπ)) (3.5)
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We also jointly finetune θI and θq by applying Le on the rollout state vectors

X∗: L
∗
e = argminθI ,θq

∑
X∗,I

`(X∗, I). The model is trained with the multi-task loss:

L = L∗e + µLπ, where µ is a scalar factor determining the trade-off between the two

terms.

3.4 Experiments

In this section, we first introduce the dataset for evaluation. Then, we describe the

competing approaches we considered and more details about our method. We also

present the experiments on simulated queries (section 3.4.1) and interaction with

human evaluators (section 3.4.2).

Dataset. We evaluate the performance of our method on the Visual Genome dataset [65].

Each image in Visual Genome is annotated with multiple region captions. We prepro-

cess the data by removing duplicate region captions (e.g. multiple captions that are

exactly the same), and images with less than 10 region captions. This preprocessing

results in 105,414 image samples, which are further split into 92,105/5,000/9,896 for

training/validation/testing. We also ensure that the images in the test split are not

used for the training of the object detector [3]. All the evaluations, including the hu-

man subject study, are performed on the test split, which contains 9,896 images. We

use region captions as queries to train our model, thus bypassing the challenging issue

of data collection for this task. The vocabulary of the queries is built with the words

that appear more than 10 times in all region captions, resulting in a vocabulary size

of 14,284. During training, queries and their orders are randomly sampled. During

validation and testing, the queries and their orders are kept fixed.
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Baselines. We compare our method with four baseline models: (1) HRE: a hierar-

chical recurrent encoder network, which is commonly adopted by recent dialog based

approaches [42, 72, 117]. We consider the framework using text queries as context,

which consists of a sentence encoder, a context encoder and an image encoder. The

sentence encoder has the same word embedding (e.g. the linear projection WE) and

sentence embedding (e.g. the φ function) as the proposed model. The context en-

coder is a uni-directional GRU network ψ that sequentially integrates the sentence

features qt from φ and generates the final query feature x̄t : x̄t = ψ(qt, x̄t−1). x̄0

is initialized as a zero vector. The image encoder maps the mean-pooled features of

ResNet152 [49] into a one-dimensional feature vector v̄ via a linear projection. The

ResNet model is pre-trained on ImageNet [30]. The model is trained to optimize the

cosine similarity between x̄t and v̄ by a triplet loss with hard negatives as in [35].

(2) R-HRE: a model similar to baseline (1) but is trained with the region features

{vj}Nj=1, as in the proposed method. Specifically, the model learns to optimize the

similarity term s(x̄t, I) defined in Eq.(3.1) by a triplet loss with hard negatives similar

to Le on one state vector. (3) R-RE: a model similar to baseline (2) but instead of

using a hierarchical text encoder, this baseline uses a single uni-directional GRU net-

work which encodes the concatenation of the queries. (4) R-RankFusion: a model

where each query is encoded by a uni-directional GRU network and each image is

represented as a set of region features {vj}Nj=1. The ranks of all images are computed

separably for each turn. The final ranks of the images are represented as the averages

of the per-turn ranks.

Implementation details. We try to keep consistent configurations for all the mod-

els in our experiments to better evaluate the contribution of each component. In

particular, all the models are trained with 10-turn queries (T = 10). We use ten

turns as we’d like to track and demonstrate the performance of all methods in both
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Figure 3.3: Quantitative evaluation of our models and the baselines. (A) Comparison
of models using query representations of the same memory size; (B) Comparison of
the models using query representations of different memory sizes. The horizontal axis
represents the query turn.

short-term and long-term scenarios. For each image, we extract the top 36 regions

(N = 36) detected by a pretrained Faster RCNN model, following [3]. Each embed-

ded word vector has a dimension of 300 (E = 300). In all our experiments, we set the

temperature parameter σ to 9, the margin parameter α to 0.2, the discount factor γ

to 1.0, and the trade-off factor µ to 0.1. For optimization, we use Adam [61] with

an initial learning rate of 2e − 4 and a batch size of 128. We clip the gradients in

the back-propagation such that the norm of the gradients is not larger than 10. All

models are trained with at most 300 epochs, validated after each epoch. The models

which perform best on the validation set are used for evaluation.

Evaluation metrics To measure the retrieval performance, we use the common

R@K metric, i.e., recall at K - the ratio of queries for which the target image is

among the top-K retrieved images. The R@1, R@5 and R@10 scores at each turn are

reported as shown in Fig. 3.3.
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Methods HRE/R-RE1280 R-HRE640/1280 Drill-down3×128 / 3×256 / 5×256 / 10×256

# Query Rep. 1280 640 / 1280 384 / 768 / 1280 / 2560
# Image Rep. 1280 / 36 × 1280 36×640 / 36 × 1280 36 × 128 / 36 × 256 / 36 × 256 / 36 × 256
# Parameters 22820k 9866k / 22820k 4861k / 5830k / 5830k / 5830k

Table 3.1: Sizes of the query/image representations and the parameters in our models
and the baselines.

3.4.1 Results on Simulated User Queries

Due to the lack of existing benchmarks for multiple turn image retrieval, we use the

annotated region captions in Visual Genome to mimic the user queries. As region

captions focus more on invariant information, such as image contents, and convey

fewer irrelevant signals, such as different speaking/writing styles, they could be seen

as the common ”abstracts” of real queries in different forms. While we agree that

strong supervisory signals such as real user queries could bridge the domain gap

and would like to explore further in this direction, we choose at this stage to use

only ”weak but free” signals and investigate their potentials of being generalized to

real scenarios. First, we compare our method against the baseline models when using

query representations of the same memory size. In particular, we use 5 state vectors in

our model (M = 5), each with a dimension of 256. Accordingly, the baseline models

use a 1280-d query vector. Figure 3.3(A) shows the per-turn performance of the

models on the test set. Here Drill-down5×256(FP) indicates the supervised pre-trained

model with the fixed policy, and Drill-down5×256 indicates the jointly optimized model

with a learned policy. Both the R-RE1280 and R-HRE1280 baselines perform better

than the HRE1280 model, demonstrating the benefit of incorporating region features.

R-HRE1280 is superior to R-RE1280, demonstrating the benefit of hierarchical context

encoding. R-RankFusion1280 performs inferior to all other models. Note that it also

requires more memory to store the ranks of all images at each turn. Our models

significantly outperform all baselines by a large margin. On the other hand, we

observe that the performance of our model will degrade when different queries have to
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share the same state vector. For example, after the 5th turn, the Drill-down5×256(FP)

model gains less improvement from each new query. Drill-down5×256 further improves

Drill-down5×256(FP) by learning to distribute the queries into the most rewarding

state vectors.

To investigate the design space of the query representation, we further explore

variants of our model with different numbers of state vectors and feature dimensions.

Table 3.1 shows the sizes of the query/image representations and the parameters used

in our models and the baselines. Note that the R-RankFusion and R-RE models have

the same size of query/image representations and parameters. Here Drill-downM×D

indicates the model with M state vectors, each with a dimension of D. As shown in

Figure 3.3(B), while both Drill-down and the R-HRE baseline can be improved by

increasing the feature dimension, using more state vectors gains significantly more im-

provements with the same, or even less memory budget. For example, Drill-down3×128

significantly outperforms R-HRE1280 with 3 times fewer query features, 10 times fewer

region features and 4 times fewer parameters. The highest performance is achieved

by the model which stores each query in a distinct state vector: 10 state vectors for

10-turn queries. Integrating multiple queries into the same state vector could make

the model “forget” the responses from earlier turns, especially when they activate the

same semantic space as the new query.

Figure 3.4 provides qualitative examples of the Drill-down3×128 model. Here the

arrows indicate the predicted state vectors used to incorporate the queries. We show

the top-3 regions of the target images that have the highest similarity scores with

each state vector (illustrated with the same color). We observe that the model tends

to group queries with entities that potentially coincide with each other. However, it

could also lead to the “forgetting” of earlier queries. For instance, in the first example,

when aggregating the queries “child in a stroller” and “woman in a dress” in order,
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Figure 3.4: Qualitative examples of Drill-down3×128. The sequential queries and the
corresponding state vectors used to integrate them are shown on the left; The top-3
regions of the target images attended by each state vector are shown on the right,
with the same color as the corresponding state vector. Note that all these target
images rank top-1 given the input queries.

the model tends to focus on “woman” while forgetting information about “child”, as

“woman” and “child” potentially activate the same semantic subspace.

3.4.2 Results on Real User Queries

We evaluate our method with the queries from crowdsourced human users via a multi-

round interactive system adapted from [19]. Given a target image, a user is asked to

search for it by providing descriptions of the image content. The system shows top-5

retrieved images to the user per turn as context so that the user can improve the

results by providing additional descriptions. This process is repeated until the image

is found or it reaches 5 turns. We sample 80 random images from the test set and

evaluate HRED1280, R-HRED1280 and Drill-down3×256 on these images respectively.

Each image is viewed by 3 different users. For each model, the best result on each
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Figure 3.5: Examples of real user queries and the top-1 images from Drill-down3×256.

image is selected across users to ensure high quality responses.

As shown in Fig. 3.6, most users (> 80%) successfully find the target image

within 5 turns, demonstrating the effectiveness of the multi-round search paradigm

and the quality of using region captions for training. In particular, Drill-down3×256

consistently outperforms HRE1280 and R-HRE1280 on all evaluation metrics. On the

other hand, as real user queries have more flexible forms, e.g. longer sentences,

repeated descriptions of the same region, etc, we also observe smaller performance

gaps between our method and the baselines. We believe further efforts such as real

query data collection are needed to systematically fill this domain gap. Figure 3.5

shows example real user queries and the retrieval sequences using Drill-down3×256.
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Figure 3.6: Human subject evaluation of the HRE1280, R-HRE1280 baselines and our
Drill-down3×256 model.

3.5 Summary

In this chapter, we present Drill-down, a framework that is efficient and effective

in interactive retrieval of specific images of complex scenes. Our method explores

in depth and addresses several challenges in multiple round retrievals with natural

language queries such as the compactness of query state representations, and the

need for region-aware features. It also demonstrates the effectiveness of training a

retrieval model with region captions as queries for interactive image search under

human evaluations.
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Chapter 4

Learning Visual Similarity of

Images using Reranking

Transformers

4.1 Introduction

In the Text2Scene and Drill-down projects, we leverage compositional (part-based)

representations to model the correlation between visual and language data. In this

chapter, we explore learning the correlation between pure visual data using local-

based representations. Particularly, we study the problem of instance-level recogni-

tion/retrieval.

Instance recognition [113] aims to visually recognize an object/scene instance in

an image. This is distinct from category-level recognition (e.g. the ILSVRC image

classification [30]) that identifies only the object class. It is also a challenging problem

in e-commerce where the objective is to find a specific product from a large image

collection, and place identification where the objective is to use features from public

landmarks to infer the identity of a place. Since the number of instances is typically
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much larger than the number of categories of objects, instance recognition is typically

cast as image retrieval instead of classification, and usually involves both metric

learning and local feature matching strategies for reranking.

Over the last decade, instance recognition/retrieval continues to be a major fo-

cus of research. Early systems [94, 113] leverage hand-crafted local descriptors (e.g.

Bag-of-Words (BOW)) and matching algorithms. With the advent of convolutional

neural networks (CNNs) [47, 66], recent approaches incorporate both global and local

descriptors extracted from deep learning models [8, 88]. On the one hand, global de-

scriptors summarize the content of an image into a single vector, leading to a compact

representation for large-scale search. On the other hand, local descriptors encode the

spatial layout of visual elements for patch-level matching between images, which are

shown to be essential to high retrieval precision [16, 126]. However, computing the

similarity for every possible pair of images can be prohibitively expensive for large-

scale search. Thus, the best existing methods [16, 112] typically first use a global

descriptor to reduce the solution space, then use local descriptors to re-rank the top

retrieved images. While extensive progress has been made towards learning more ex-

pressive global/local representations, fewer techniques are developed for local features

based similarity learning. State-of-the-art approaches still rely on classic matching

techniques, such as geometric verification (GV) [94] and aggregated selective match

kernels (ASMK) [125]. Geometric verification assumes object instances are rigid and

that local matches between images can be estimated as an affine transformation using

RANSAC [37]. It is also an expensive process which requires iterative optimization on

a large set of local descriptors.The performance of geometric verification deteriorates

when deformable objects or challenging conditions (e.g. large variations in viewpoint

or illumination) are present. ASMK focuses more on aggregating the similarities

between features without explicitly modeling the geometric alignment, but requires

off-line clustering and encoding procedures. It is mainly used as a global retrieval
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technique in previous literature. Both geometric verification and ASMK require large

amounts of local descriptors (e.g. 1000 per image) to ensure retrieval performance.

In this chapter, we take the initiative to advance the techniques for similarity learn-

ing using global/local descriptors. We propose Reranking Transformers (RRTs) [123],

which learn to predict the similarity of an image-pair directly. Our method is general,

flexible, and can be used as a drop-in replacement for other reranking approaches such

as geometric verification. We conduct detailed experiments showing that as either a

drop-in replacement or trained together with a global metric learning approach, the

proposed method is the top performing across the standard benchmarks for instance

recognition. Our approach is inspired by the Transformer architecture [130] which

leads to significant improvements in many natural language processing [31, 75] and

Vision-and-Language tasks [71, 78]. Most recently, it has also been introduced to pure

visual tasks, such as image synthesis [91], recognition [33] and object detection [17].

Distinct from conventional neural networks (e.g. CNN, RNN), Transformers capture

long-range dependencies among the input elements using self-attentions. It was ini-

tially designed for sequential modeling [130]. To the best of our knowledge, our work

is the first to adopt transformers for a visual task involving the analysis of image

pairs in the context of reranking image search results.

The proposed method is lightweight. Compared with the convolutional neural

network (CNN) based feature extractors ((i.e. ResNet 50/101 as in [16])), which

typically have over 20 million parameters (e.g. 25/44 million in ResNet 50/101), the

proposed model, used as an extra module for similarity measurement in addition to

the CNN backbone, has only 2.2 million parameters. It can also be easily parallelized

so that re-ranking the top 100 retrieved images requires only a single neural network

forward pass, allowing for more efficient model inference. Similar to geometric ver-

ification, our method aims to learn the region-wise alignment of an image-pair but

with a more straightforward pipeline. As shown in Fig. 4.1, our method directly
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Figure 4.1: Top performing instance recognition methods often rely on reranking the
top results using a score such as the number of inlier correspondences from geometric
verification. We propose to replace this step with a Reranking Transformer (RRT)
that can be learned with the underlying representations of the images.

predicts a similarity score of the matching images, instead of estimating a homogra-

phy, which may be challenging under large viewpoint changes or may not even exist

for deformable objects. Our method requires much fewer descriptors (i.e. 500 per

image), but achieves superior performance, especially for challenging cases. Also,

in current state-of-the-art models, the feature extraction and the matching modules

are separately optimized, which is undesirable as it may lead to suboptimal feature

representation. In this work, we first perform experiments using pretrained feature

extractors. We then demonstrate the benefit of integrating the feature extractor

and the proposed model into a unified framework and evaluate the resulting unified

model on a benchmark of product images: Stanford Online Products [116]. We show

that, by jointly optimizing the feature representation with our model, the re-ranking

performance can be further improved.

Contributions. (1) We propose Reranking Transformers (RRTs), a lightweight
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and effective model which learns to estimate the similarity of an image pair based

on their global and local descriptors; (2) Compared with existing methods, the pro-

posed method requires much fewer local descriptors and can be easily parallelized so

that re-ranking the top neighbors for each query requires only a single neural net-

work forward-pass; (3) We perform extensive experiments on three instance retrieval

benchmarks: Revisited Oxford/Paris [98] and Google Landmarks v2 [138], and show

that RRTs outperform prior reranking methods across a variety of settings. The

results demonstrate the effectiveness of the transformer architecture on learning the

visual correlation between images; (4) We further show the benefit of optimizing the

proposed model jointly with the feature extractor on the Stanford Online Products

(SOP) [116] benchmark.

4.2 Related Work

Local features for instance recognition/retrieval. Hand-crafted local descrip-

tors [82], e.g. SIFT [77], were widely used in the earliest instance retrieval work [86,

113]. These descriptors were believed to be more invariant to image changes such as

illumination, occlusion and truncation than global signatures, e.g. GIST [89]. Re-

cently, local features extracted from convolution neural networks (CNN) have been

shown to be more effective on various retrieval tasks [34, 88, 112, 124]. Siméoni et

al. [112] detects local features from a pretrained CNN backbone using maximally sta-

ble extremal regions (MSER) originally developed by Matas et al. [81], while [16, 34,

88, 124, 126] propose to jointly learn feature representation and detection by either

performing a non-local-maximum suppression on the feature responses [34, 126], or in-

corporating visual attentions [16, 88, 124]. The detected local descriptors are usually

used for geometric verification [94] or ASMK [125]. Different from these works, we

focus on similarity learning rather than feature detection or representation learning.
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Global features for instance recognition/retrieval. Compared to local fea-

tures, global descriptors provide a compact representation of an image for large-scale

search. Most of the existing global descriptors are extracted from CNN models [8, 41]

by spatially pooling the two-dimensional feature responses [7, 97, 128], which may not

be ideal for modeling region-wise relations across images. Thus, state-of-the-art sys-

tems typically either use the global descriptor to reduce the solution space and then

use local descriptors to re-rank the nearest neighbors, or encode the local descrip-

tors using a large visual codebook, followed by image matching with an aggregated

selective match kernel [124–126]. This work mainly follows the retrieve-and-rerank

paradigm.

Reranking for instance recognition/retrieval. Geometric verification is the

dominant image reranking approach and widely used in both traditional [94] and

more recent work [16, 88, 112]. Geometric verification assumes rigid objects and

seeks to estimate a linear transformation between images by iteratively aligning local

descriptors. Inspired by text retrieval, query expansion techniques have also been

introduced for image retrieval [25, 26, 127]. These methods differ from geometric

verification and our work as they rely on analyzing the local nearest neighbor graph

for each query during testing. On the other hand, diffusion based approaches [9, 10,

32, 52, 149] aim to learn the structure of the data manifold by similarity propagation

over the global affinity graph built on a query and all the gallery images, which is

nontrivial to scale. Overall, the motivation of image reranking is to make better use

of test-time knowledge to refine retrieval results. Our work shares the same vision

with this line of research but focuses more on learning the similarity of an image-pair

directly.

Transformers for visual tasks. Transformers have become the dominant model

architecture in natural language processing [31, 75]. Recently, it has also been
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introduced to vision-and-language [71, 78] and pure vision tasks [17, 91]. Par-

mar et al [91] develop a transformer based autoregressive model for image synthesis.

Carion et al [17] casts object detection as a direct set prediction problem using trans-

formers. As the key ingredient of the transformer architecture, the self-attention

mechanism has also been studied for visual recognition [12, 99, 151]. These prior

works apply transformers for single image predictions while we leverage transformers

to learn the visual relation of an image-pair.

4.3 Method

4.3.1 Background

We study the problem of learning the visual similarity of an image pair using global/local

descriptors. In particular, we follow the retrieve-and-rerank paradigm [16, 112] and

exploit a hierarchical framework where a global descriptor of the query is first used

to retrieve the top-ranked neighbors and local descriptors are then used to rerank

these candidates. The dominant approach for the latter task is geometric verification

(GV) [94]. In modeling the relation of an image pair capturing the same object/scene,

geometric verification assumes the underlying object/scene is rigid and seeks to esti-

mate an affine transformation between the local descriptors of the image pair using

RANSAC [37]. Despite its simplicity, it is shown to be surprisingly effective if suffi-

cient local descriptors (e.g. 1000 per image) are provided. Given enough computing

resources, geometric verification is still considered to be the state-of-the-art [112].

We explore an alternative solution to the reranking task by introducing a transformer

based matching algorithm. The proposed method does not require the rigidity prior

inherent to geometric verification and can potentially model more challenging ob-

jects/scenes.
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Figure 4.2: Illustration of the Reranking Transformer (RRT) model. The input of
RRT is a sequence of global and local descriptors (circled in blue) extracted from
an image-pair (I, Ī)). This sequence, together with two special tokens, are fed into a
multi-layer transformer model which produces a similarity score of (I, Ī). The model
is trained to optimize a binary cross entropy loss.

4.3.2 Attention Modules in Transformers

First, we briefly review the key ingredients in the Transformer architecture: Single-

Head Attention (SHA) and Multi-Head Attention (MHA).

Single-Head Attention (SHA): The input of a SHA layer comprises three sets

of variables: the queries Q := {qi ∈ Rdq}Ni=1, the keys K := {kj ∈ Rdk}Mj=1, and the

values V := {vj ∈ Rdv}Mj=1. Here, dq, dk, dv are the dimensions of the corresponding

feature vectors, while N and M are the sequence lengths. SHA produces a new

feature sequence where each vector is a linear combination of {vj}. In doing this,

Q, K, V are first linearly projected as Q̄ = QWQ, K̄ = KWK , V̄ = VW V , using

parameter tensors: WQ ∈ Rdq×d, WK ∈ Rdk×d, W V ∈ Rdv×d, where d is the new

feature dimension. The output of a SHA layer is computed as:

SHA(Q, K, V) := softmax(
Q̄K̄

T

√
d

)V̄ (4.1)

Multi-Head Attention (MHA): Like SHA, MHA takes Q, K, V as input and
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comprises multiple SHA modules:

MHA(Q, K, V) := [head1; · · · ;headh]W
O

headi := SHAi(Q, K, V)

(4.2)

Here [; ] denotes the concatenation operator, h is the number of the SHA heads.

WO ∈ Rd×(hd) is a linear projection with an output dimension of size h× d.

4.3.3 Model

With the fundamental building blocks defined above, we introduce the detailed for-

mulation of our model:

Image representations: An image I is represented by a global descriptor of

a dimension dg: xg ∈ Rdg and a set of L local descriptors: xl = {xl,i ∈ Rdl}Li=1,

each of a dimension dl. Both xg and xl are extracted from a CNN backbone (to be

discussed in Sec. 4.4.2). Optionally, each xl,i is associated with a coordinate tuple

pl,i = (u, v) ∈ R2 and a scale factor sl,i ∈ R, indicating the pixel location and image

scale where xl,i is extracted from. In this work, sl,i is an integer, indexing a set of

pre-defined image scales.

Input: As a sequence transduction model [31, 75], Transformers take as input a

list of “tokens” (e.g. Q,K,V in Sec. 4.3.2). In image retrieval, these “tokens” can be

derived from the features of an image-pair (I, Ī). Following the BERT transformer

encoder [31], we define the input as:

X(I, Ī) := [ 〈CLS〉; fg(xg); fl(xl,1); · · · ; fl(xl,L);

〈SEP〉; f̄g(x̄g); f̄l(x̄l,1); · · · ; f̄l(x̄l,L) ],

(4.3)
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where:

fg(xg) := xg + α;

fl(xl,i) := xl,i + ϕ(pl,i) + ψ(sl,i) + β

f̄g(x̄g) := x̄g + ᾱ;

f̄l(x̄l,i) := x̄l,i + ϕ(p̄l,i) + ψ(s̄l,i) + β̄.

(4.4)

Here, 〈CLS〉 is a special token used for summarizing the signals from both images.

〈SEP〉 is an extra separator token. α, ᾱ, β, β̄ are one dimensional segment embed-

dings, being used to distinguish the global and local descriptors of I and Ī. ϕ is a

linear position embedding, as used in [17]. ψ is a linear embedding taking the scale

index sl,i as input.

Model architecture: With input X(I, Ī), we define a multi-layer transformer

model, where each layer is formulated as:

Z̄i+1 = LayerNorm(Zi + MHA(Zi)),

Zi+1 = LayerNorm(MLP(Z̄i+1)),

MLP(Z̄i+1) = ReLU(Z̄i+1W
T
1 )W T

2 ,

i = 0, · · · , C − 1.

(4.5)

In this setting, the Q, K, V features for MHA are the same set of vectors Zi,

with Z0 = X(I, Ī). MLP is a two-layer perceptron with parameter matrices W1 ∈

R(hd)×dc and W2 ∈ Rdc×(hd), and an intermediate dimension dc. LayerNorm is a layer

normalization function proposed in [6]. The model includes C transformer layers in

total.

Training objective: Our model is trained to optimize a binary cross entropy
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loss:

E(I, Ī) = BCE(sigmoid(Z
〈CLS〉
C W T

z ),1(I, Ī)), (4.6)

1(I, Ī) =

 1.0, I, Ī represent the same instance

0.0, otherwise
(4.7)

Z
〈CLS〉
C ∈ Rhd is a feature vector, corresponding to the 〈CLS〉 token. It is extracted

from the last transformer layer. W T
z ∈ R(hd)×1 is a linear function mapping Z

〈CLS〉
C

to a logit scalar. 1(I, Ī) is an indicator function which equals to one when I and Ī

represent the same object, or zero otherwise. Fig. 4.2 provides an illustration of the

proposed model.

4.4 Experiments

Next, we describe the datasets we use to evaluate our approach, and details about

our implementation.

4.4.1 Datasets

We perform experiments on three datasets, Google Landmarks v2 [138], Revisited

Oxford/Paris [98], and Stanford Online Products [116]. The former two are used

for instance matching and showcase landmark locations where geometry verification

plays a prominent role. The Stanford Online Products dataset showcases images of

products that may be deformable so that correspondences between images cannot be

modeled with an affine transformation. It has been mostly used for metric learning.

We briefly describe each of these resources:

GLDv2: Google Landmarks v2 (GLDv2) [138] is a new benchmark for instance

recognition that includes over five million images from 200k natural landmarks. As the
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proposed Reranking Transformer has limited parameters (e.g. 2.2 million), we sample

a small subset of the images from the “v2-clean” split of GLDv2 for training. The

“v2-clean” split consists of 1,580,470 images from 81,313 landmarks. We randomly

sample 12,000 landmarks where each landmark has at least 10 images. For each

landmark, we randomly sample at most 500 images. This results in 322,008 images,

which is 20% of the “v2-clean” split and 8% of the original training set. For testing,

we evaluate on the standard test set for the retrieval task, which contains 1,129 query

images and 761,757 gallery images.

ROxf and RPar: Revisited Oxford (ROxf) and Paris (RPar) [98] are standard

benchmarks for instance recognition, which have 4,993 and 6,322 gallery images re-

spectively. They both have 70 query images, each with a bounding box depicting

the location and span of the prominent landmark. An extra distractor set (R1M)

with 1,001,001 images is included for large-scale experiments. We follow the standard

evaluation protocol [16, 98] and crop the query image using the provided bounding

box. We report mean Average Precision (mAP) on the Medium and Hard setups.

SOP: To further investigate the benefit of jointly optimizing the feature repre-

sentation and our Reranking Transformer, we perform experiments on a dataset of

product images: Stanford Online Products (SOP) [116]. SOP is a commonly used

benchmark for metric learning [13, 15, 104, 105, 109, 135, 139], which includes 120,053

images, 59,551 for training, 60,502 for testing. We follow the evaluation protocol for

metric learning and measure the R@K scores.

4.4.2 Implementation

Experiments on pretrained features: As this work mainly focuses on similarity

learning rather than feature learning, we leverage image descriptors obtained from

state-of-the-art feature extractors. In particular, we use the pretrained DELG models
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provided by [16] with ResNet50 [47] as the CNN backbone. DELG provides a unified

framework for global/local feature extraction. The local descriptors are extracted

from 7 image scales ranging from 0.25 to 2.0, each with a dimension of 128. The global

descriptor is extracted from 3 image scales: { 1√
2
, 1,
√

2}, with a dimension of 2048.

We apply an extra linear projection to the global descriptor to reduce its dimension to

128. In the original DELG model, each local descriptor comes with an attention score.

The top 1000 local descriptors with the highest attention scores are selected for image

reranking. We observe that RRT does not require this amount of descriptors, and the

retrieval performance saturates at 500 local descriptors. Thus, in our experiments we

choose the top 500 local descriptors and set L = 500, dg = dl = 128. For images with

fewer descriptors, we pad the feature sequence with empty vectors and use a binary

attention mask, as in BERT [31], to indicate the padding locations. Both the global

and local features are L2 normalized to unit norm. During training, the positive

image is randomly sampled from the images sharing the same label as the query.

The negative image is randomly sampled from the top-100 neighbors returned by the

global retrieval, which have a different label from the query. DELG are pretrained

on both Google Landmarks (GLD) v1 [88] and v2-clean [138]. Thus, we perform

experiments on two sets of descriptors from these two pretrained models. For the

architecture, we use 4 SHA heads (h = 4) and 6 transformer layers (C = 6). dq, dk,

dv and d in SHA are set to 128, while dc in MLP (Eq. 4.5) is set to 1024. The number

of learnable parameters is 2,243,201, which is 9% of the amount in ResNet50. The

model is trained with AdamW [76] for 15 epochs, using a learning rate of 0.0001 and

a weight decay of 0.0005.

Experiments on SOP: The DELG descriptors are extracted from multiple im-

age scales, it is nontrivial to jointly optimize them with RRT. Instead, we perform

experiments on SOP [116] using a single image scale, following the protocol for met-
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ric learning [135]. During training, each image is randomly cropped to 224 × 224,

followed by a random flip. During testing, each image is first resized to of 256× 256

then cropped at the center to 224× 224. We use ResNet50 and extract features from

the last convolutional layer, which leads to 49 (7 × 7) local descriptors for each im-

age. We use all these local descriptors. The global descriptor is obtained by spatially

averaging the local responses. The RRT architecture and most of the training de-

tails remain the same as in the DELG experiments. Here we only describe the main

differences. The global retrieval model is trained with a contrastive loss, as in [135].

Different from [135], we do not rely on a cross batch memory but simply use a large

batch size of 800. As all the local features are used, we do not incorporate the global

descriptor term (fg(xg), f̄g(x̄g)) in Eq. 4.3. We also drop the scale embedding (ψ) as

only one image scale is used. The global model is trained using SGD with Nesterov

momentum for 100 epochs, using a learning rate of 0.001, a weight decay of 0.0005

and a momentum of 0.9. The learning rate drops by a factor of 10 after 60 and 80

epochs. We train an RRT model on top of the pretrained global model, either freezing

or finetuning the CNN backbone. Both models are trained with AdamW [76] for 100

epochs, using a learning rate of 0.0001. The learning rate drops by a factor of 10 after

60 and 80 epochs. We implement RRT in PyTorch [92].

Position embedding: For the experiments on the DELG descriptors, we observe

a limited benefit in applying position embeddings and do not use the ϕ term in Eq. 4.4.

For the experiments on SOP, we observe the position embedding is indeed helpful,

especially when the feature representations are jointly optimized with the Reranking

Transformer.
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Figure 4.3: An extreme example where the target images are some crops of the query.
In this case the global descriptor + cosine similarity retrieval paradigm is not ideal.

4.5 Results

We demonstrate the effectiveness of Reranking Transformers (RRTs) across different

settings, benchmarks and use cases.

4.5.1 Baselines

We consider geometry verification [94] and αQE [26] as the main baselines as they

share the same spirit with our method: they make better use of test-time informa-

tion. When comparing the query and target images, geometry verification attends to

different sub-regions of the query image when the target image is different, and vice

versa, which is very similar to the proposed Reranking Transformers (RRTs). αQE

also leverages test-time knowledge, but relies on analyzing the local affinity graph

created during testing. Incorporating test-time knowledge is the key motivation of

image reranking, and we believe that the attention modules in the transformer ar-

chitecture (sec. 4.3.2) is very suitable for this task. It also distinguishes our method

from most of the previous approaches that focus on feature learning. Note that we

use pretrained and fixed feature representation in most of our experiments.

Fig. 4.3 provides another intuitive example of the partial-matching cases. In
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this example, the target images are some crops of the query. We believe the global

descriptor + cosine similarity paradigm is not ideal for this case, as no matter how

large is the global descriptor, it contains irrelevant information that hinders the cosine

similarity measurement. On the other hand, the cross-image attention in our model is

shown to be very helpful for these situations. We trained a variant of our model that

disables cross-image attentions and uses the cosine-similarity of the Z
〈CLS〉
C vectors as

the score. This baseline performs even worse than the global-only retrieval. We posit

that without finetuning the backbone, the extra transformer module may not help a

lot with feature learning. On the other hand, it also demonstrates that any benefit

of the proposed method can only be from the cross-image attentions.

Aggregated Selective Match Kernel (ASMK) [125] was previously not used for im-

age reranking but as a global-only retrieval approach. Specifically, it proposes to cre-

ate a set of new filters (i.e. visual codebook) by clustering. It then remaps/aggregates

the local descriptors of each image into a global vector. We perform experiments on

ASMK as it also relies on local descriptors.

4.5.2 Comparison with Geometric Verification

We perform experiments on comparing GV and RRT using the same set of descriptors,

i.e. the pretrained DELG [16] descriptors. Following the protocol in [16], given a

query, we use its global descriptor to retrieve a set of top-ranked images. The top-100

neighbors are reranked by GV and RRT. We present results on two sets of descriptors:

DELG pretrained on GLD v1 [88] and v2-clean [138].

On ROxf and RPar, both GV and RRT significantly outperform global-only re-

trieval, as shown in Table 4.1. RRT shows further advantages over GV, with much

fewer local descriptors. On ROxf (+R1M), RRT performs on par with GV on the

Medium setup and consistently better on the Hard setup. On RPar (+R1M), RRT
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Method
# local # Reranked Desc. Medium Hard
desc. images version ROxf +R1M RPar +R1M ROxf +R1M RPar +R1M

DELG global 0 0 v1 69.7 55.0 81.6 59.7 45.1 27.8 63.4 34.1

GV 1000 100 v1 75.4 61.1 82.3 60.5 54.2 36.8 64.9 34.8
RRT (ours) 500 100 v1 75.5 61.2 82.7 60.7 56.4 37.0 68.6 37.5

GV∗ 1000 200 v1 77.2 63.1 82.5 60.9 55.4 37.9 63.2 34.7
RRT (ours) 500 200 v1 77.9 63.5 84.4 62.1 58.8 39.5 71.6 39.5

DELG global 0 0 v2-clean 73.6 60.6 85.7 68.6 51.0 32.7 71.5 44.4

GV 1000 100 v2-clean 78.3 67.2 85.7 69.6 57.9 43.6 71.0 45.7
RRT (ours) 500 100 v2-clean 78.1 67.0 86.7 69.8 60.2 44.1 75.1 49.4

GV∗ 1000 200 v2-clean 79.2 68.2 85.5 69.6 57.5 42.9 67.2 44.5
RRT (ours) 500 200 v2-clean 79.5 68.6 87.8 71.5 62.5 46.3 77.1 52.3

Table 4.1: Comparison to geometric verification on Revisited Oxford/Paris [98]. The
mAP scores on the Medium (+R1M) and Hard (+R1M) setups are reported. Results
marked by ∗ are evaluated by us using the public models provided by [16].

Method
# local Desc. Retrieval

desc. version Public Private

DELG global 0 v1 18.3 20.4
GV 1000 v1 20.4 22.3
RRT (ours) 500 v1 21.5 23.1

DELG global 0 v2-clean 22.2 24.2
GV 1000 v2-clean − 24.3
RRT (ours) 500 v2-clean 24.6 27.0

Table 4.2: Comparison to geometric verification on the GLDv2 retrieval task [98].
The mAP@100 scores on the public and private test sets are reported.

consistently outperforms GV. The largest performance gap appears on the Hard setup.

RRT obtains 2.2 (3.7) absolute improvements over GV on ROxf (RPar), when using

the “v1” descriptors. We posit that, while GV is very effective for sufficiently similar

images, it has difficulty handling challenging cases, e.g. large variations in viewpoint.

To verify this hypothesis, we try re-ranking more images (e.g. top-200). The perfor-

mance gap becomes larger indeed. RRT obtains 3.4 (8.4) absolute improvements over

GV on ROxf (RPar), when using the “v1” descriptors.

We present results on the GLDv2 retrieval task [138] in Table 4.2. Following [16],

we report the mAP@100 scores on both the public and private test sets. Compared
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with ROxf and RPar, the improvement of applying re-ranking on GLDv2 becomes

smaller. On the other hand, RRT performs consistently better than the global re-

trieval baseline and GV. When using “v2-clean” descriptors, the absolute improve-

ments of RRT over global-only (GV) on the private set are 2.8 (2.7).

4.5.3 Ablation on the Number of Local Descriptors

In the DELG model, for each image, a maximum of 1000 local descriptors with a

predefined minimum attention score are extracted for geometric verification. In our

experiment, we observe that for most of the images, the number of the extracted

local descriptors is close to 1000. For example, on the sampled GLDv2 training set,

the query and gallery sets of the Revisited Oxford (ROxf) [98] benchmark, DELG

extracts 955/759/987 local descriptors per image on average.

We perform ablation experiments by setting the maximum number of local de-

scriptors used for each image to different values. The features used in the experiments

were pretrained on the v2-clean split of GLDv2. For purposes of comparison, we in-

clude the results of geometry verification (GV) and the proposed method (RRT). We

report the mAP scores on the Revisited Oxford (ROxf) benchmark in Table 4.3.

Both GV and RRT benefit from using more local descriptors in general. Nev-

ertheless, the performance of RRT saturates at 500 local descriptors. As the local

descriptors are extracted from seven image scales, we conjecture that in each image

there are descriptors extracted from the same geometry location, thus providing dupli-

cate information. To verify this, we compute the number of distinct local descriptors

extracted from different grid locations. In particular, we assign each local descriptor

xl,i to a grid location (gu, gv) by (gu, gv) = (bu/16c, bv/16c). Here (u, v) is the co-

ordinate of xl,i provided by the DELG model, 16 is the stride of the convolutional

feature map where xl,i is extracted from. We then group the descriptors sharing the
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# Local Medium Hard
Desc. GV RRT GV RRT

200 72.1 76.7 48.3 58.9
400 75.2 77.6 53.8 58.6
500 75.7 78.1 53.4 60.2
600 77.4 77.9 55.9 59.6
800 77.9 76.9 56.7 57.4
1000 78.3 78.1 57.9 60.4

Table 4.3: Ablation on the number of local descriptors used per image. We compare
the proposed Reranking Transformer (RRT) model to geometric verification (GV) on
Revisited Oxford [98]. The mAP scores on the Medium and Hard setups are reported.

same grid location as a distinct descriptor. We observe that, the number of distinct

local descriptors is significantly smaller than the number of all local descriptors per

image. For example, on the sampled GLDv2 training set, the query and gallery sets

of Revisited Oxford (ROxf), the numbers of distinct local descriptors per image are

585/465/655 on average.

When using the same amount of local descriptors, the proposed method outper-

forms geometry verification in four of the six experiments on the Medium setup, and

consistently outperforms geometry verification in all experiments on the Hard setup.

4.5.4 Comparison with Query Expansion

Query expansion (QE) [25, 26, 127] is another popular reranking technique for im-

age retrieval. Different from GV and RRT, QE aggregates the query image and a

number of top-ranked neighbors into a new query. This new query is used to rerank

all the gallery images rather than the nearest ones as in GV and RRT. We com-

pare RRT with one of the most widely used query expansion methods: α-weighted

query expansion (αQE) proposed in [97]. We use the public implementation of αQE

released by [103]. αQE has two hyper-parameters: (1) nQE, the number of top-

ranked neighbors to aggregate; (2) α, the exponential weight. In [103], they are set
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Method
# Reranked Desc. Medium Hard
images version ROxf +R1M RPar +R1M ROxf +R1M RPar +R1M

DELG global v1 69.7 55.0 81.6 59.7 45.1 27.8 63.4 34.1

αQE v1 72.9 60.7 83.4 63.7 49.4 33.6 66.1 38.1
RRT (ours) 100 v1 75.5 61.2 82.7 60.7 56.4 37.0 68.6 37.5
RRT (ours) 200 v1 77.9 63.5 84.4 62.1 58.8 39.5 71.6 39.5
RRT (ours) 400 v1 79.2 66.2 86.3 64.0 60.5 42.6 74.1 41.6

αQE v1 72.9 60.7 83.4 63.7 49.4 33.6 66.1 38.1
αQE + RRT (ours) 100 v1 78.7 66.2 85.6 65.4 59.8 42.1 72.8 43.1

DELG global v2-clean 73.6 60.6 85.7 68.6 51.0 32.7 71.5 44.4

αQE v2-clean 76.6 66.4 86.7 72.8 54.6 39.5 73.2 51.2
RRT (ours) 100 v2-clean 78.1 67.0 86.7 69.8 60.2 44.1 75.1 49.4
RRT (ours) 200 v2-clean 79.5 68.6 87.8 71.5 62.5 46.3 77.1 52.3
RRT (ours) 400 v2-clean 80.5 70.6 89.1 73.8 64.2 49.5 78.1 55.6

αQE v2-clean 76.6 66.4 86.7 72.8 54.6 39.5 73.2 51.2
αQE + RRT (ours) 100 v2-clean 80.4 71.7 88.5 74.8 64.0 50.9 77.7 57.1

Table 4.4: Comparison to αQE [97] on Revisited Oxford/Paris [98]. The mAP scores
on the Medium (+R1M) and Hard (+R1M) setups are reported. We underline the
scores of αQE that RRT cannot match by just reranking the top-100 neighbors.
RRT consistently outperforms αQE when reranking the top-400 neighbors for each
query. Moreover, combining αQE with RRT significantly outperforms using αQE
only, showing that RRT and αQE are complementary to each other.

as (nQE, α) = (10, 2.0). Our experiment shows that these values do not work out

of the box for the DELG descriptors. We tune these parameters on ROxf over the

ranges: nQE ∈ [2, 15], α ∈ [0.1, 3.0], and eventually set them as (nQE, α) = (2, 0.3).

We present the results on ROxf and RPar in Table 4.4. When reranking only the

top-100 neighbors, the performance of RRT is superior to αQE on five of the eight

settings, except for RPar+Medium, RPar+R1M+Medium, RPar+R1M+Hard (un-

derlined numbers). We believe it is because αQE reranks all the gallery images while

RRT reranks only 100 neighbors and keeps the ranks of all the other images un-

changed. By reranking more neighbors, e.g. 200, 400, we show that the performance

of RRT progressively improves and eventually surpasses αQE by significant margins

across all settings. On the Hard setup with the “v1” descriptors, the absolute gains

of RRT over αQE on (ROxf, ROxf+R1M, RPar, RPar+R1M) are (11.1, 9.0, 8.0,

3.5).
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Method
# local Desc. Medium Hard
desc. version ROxf RPar ROxf RPar

DELG global 0 v1 69.7 81.6 45.1 63.4
ASMK global 1000 v1 71.2 80.8 47.1 61.6
ASMK rerank 1000 v1 71.3 82.6 47.5 66.2
RRT (ours) 500 v1 75.5 82.7 56.4 68.6

DELG global 0 v2-clean 73.6 85.7 51.0 71.5
ASMK global 1000 v2-clean 70.4 80.9 45.8 62.0
ASMK rerank 1000 v2-clean 73.1 86.3 49.3 71.9
RRT (ours) 500 v2-clean 78.1 86.7 60.2 75.1

Table 4.5: Comparison to Aggregated Selective Match Kernel (ASMK) on Revisited
Oxford/Paris [98]. The mAP scores on the Medium and Hard setups are reported.

We also perform experiments on combining αQE and RRT by reranking the top

neighbors produced by αQE. As shown in Table 4.4, combining αQE and RRT con-

siderably improves over using αQE only, with improvements of (10.4, 8.5, 6.7, 5.0) on

the Hard setup of (ROxf, ROxf+R1M, RPar, RPar+R1M) for the “v1” descriptors.

We consider query expansion and RRT are thus complementary.

4.5.5 Comparison with Aggregated Selective Match Kernel

(ASMK)

Aggregated Selective Match Kernel (ASMK) [125] also leverages local descriptors for

image retrieval. The key idea is to create a large visual codebook (i.e. filter banks) by

clustering the local descriptors. This visual codebook is used to encode the query and

gallery images into global descriptors. The clustering and encoding procedures are

typically performed off-line as they’re relatively time-consuming. Previously, ASMK

was mainly considered as a global retrieval technique. In this work, we treat ASMK

as both a global retrieval baseline and a reranking baseline. We use the public im-

plementation of ASMK released by [124]. Following the common practice proposed

in [124], we train a codebook of 65,536 visual words on ROxf for retrieval exper-
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Method
Desc. SOP
Dim R@1 R@10 R@100 R@1k

Global-only retrieval
Margin [105, 139] 128 76.1 88.4 95.1 98.3
Divide [109] 128 75.9 88.4 94.9 98.1
MIC [104] 128 77.2 89.4 - 95.6
FastAP [15] 128 73.8 88.0 94.9 98.3
XBM [135] 128 80.6 91.6 96.2 98.7
CE [13] 2048 81.1 91.7 96.3 98.8

CO 128 80.7 91.9 96.6 99.0
CO + RRT (frozen) 128 81.8 92.4 96.6 99.0
CO + RRT (finetuned) 128 84.5 93.2 96.6 99.0

Table 4.6: Results of the experiments on jointly optimizing the feature extractor and
RRT. The R@K (K =1, 10, 100, 1000) scores on SOP [116] are reported.

iments on RPar, and vice-versa. We conduct two experiments: a) ASMK global:

using ASMK for global retrieval, as in all the previous literature [124–126]; b) ASMK

rerank: using ASMK for image reranking, e.g. reranking the top-100 images from

DELG global retrieval.

We present the results on ROxf and RPar in Table 4.5. ASMK, when used as

a global retrieval approach, demonstrates comparable or inferior performance to the

DELG global retrieval. When used as a reranking approach, ASMK gains further

improvement over the DELG global retrieval, showing that they are complementary.

The proposed method consistently outperforms ASMK global/rerank in all settings.

We posit that compared with the hand-crafted kernel matching paradigm, RRTs learn

a more holistic region-wise alignment between the image-pair.

4.5.6 Feature Learning & RRT: Joint Optimization

To further explore the benefit of jointly optimizing feature representations and RRTs,

we perform experiments on the Stanford Online Products (SOP) dataset [116]. We

study three models: (1) CO : A global retrieval model trained with a contrastive
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loss [135], following the metric learning protocol. The global descriptor has a dimen-

sion of 128, as in most prior work [15, 104, 105, 109, 135]; (2) CO + RRT (frozen):

a RRT model trained on top of CO. The pretrained CO remains frozen and an extra

linear projection is used to reduce the dimension of the local descriptors to 128; (3)

CO + RRT (finetune): a model with the same architecture as CO + RRT (frozen)

but the backbone is also finetuned. It is also initialized by CO + RRT (frozen).

During testing, we perform global retrieval using the global descriptor from CO. The

top-100 neighbors for each query are reranked by either CO + RRT (frozen) or CO

+ RRT (finetune). While there is no direct comparison between our method and

global-only retrieval work, we present the results of the most recent metric learning

approaches [13, 15, 105, 135] to provide an overview of the state-of-the-art perfor-

mance on SOP.

As shown in Table 4.6, the global CO model, which is trained with a contrastive

loss using a relatively large batch size, performs surprisingly well. It achieves the

same level of accuracy as well-established works on metric learning. This aligns with

the recent research on self-supervised learning [23, 48] suggesting that contrastive

loss is very effective for feature learning. CO + RRT (frozen) further improve the

performance, demonstrating the effectiveness of reranking. Note that, as only the top-

100 images are reranked, the R@100 and R@1k scores remain unchanged. CO + RRT

(finetuned) achieves the best reranking performance, with an absolute improvement of

3.8 over the global-only retrieval on R@1. We believe it is because jointly optimizing

the backbone and our model leads to better local features that are tailored to the

reranking tasks.
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Method Training set Net
# local
desc.

Medium Hard

ROxf +R1M RPar +R1M ROxf +R1M RPar +R1M

(A) Global features
R-MAC [41] Landmarks R101 0 60.9 39.3 78.9 54.8 32.4 12.5 59.4 28.0
GeM [97] SfM-120k R101 0 64.7 45.2 77.2 52.3 38.5 19.9 56.3 24.7
GeM-AP [103] SfM-120k R101 0 67.5 47.5 80.1 52.5 42.8 23.2 60.5 25.1
DELG [16] GLDv1 R50 0 69.7 55.0 81.6 59.7 45.1 27.8 63.4 34.1

(B) Local feature
aggregation

DELF-ASMK[124] Landmarks R50 1000 67.8 53.8 76.9 57.3 43.1 31.2 55.4 26.4
HOW-ASMK[126] SfM-120k R50 1000 78.3 63.6 80.1 58.4 55.8 36.8 60.1 30.7
HOW-ASMK[126] SfM-120k R50 2000 79.4 65.8 81.6 61.8 56.9 38.9 62.4 33.7

(C) Global features
+ Re-ranking

GeM↑+DSM [112] SfM-120k R101 1000 65.3 47.6 77.4 52.8 39.2 23.2 56.2 25.0
DELG [16] + GV GLDv1 R50 1000 75.1 61.1 82.3 60.5 54.2 36.8 64.9 34.8
DELG [16] + RRT (ours) GLDv1&v2-clean R50 500 75.5 61.2 82.7 60.7 56.4 37.0 68.6 37.5
DELG [16] + GV GLDv2-clean R50 1000 78.3 67.2 85.7 69.6 57.9 43.6 71.0 45.7
DELG [16] + RRT (ours) GLDv2-clean R50 500 78.1 67.0 86.7 69.8 60.2 44.1 75.1 49.4

Table 4.7: Comparison to state-of-the-art methods on Revisited Oxford/Paris [98].
mAP scores on the Medium and Hard setups are reported.

4.5.7 Comparison with the State-of-the-Art

In Table 4.7, we compare the proposed method with the state-of-the-art on the ROxf

(+R1M) andRPar (+R1M) benchmarks. We include the most recent instance recog-

nition/retrieval models in three different groups: (A) Retrieval by global features only;

(B) Retrieval by local feature aggregation; (C) Retrieval by combining global features

with re-ranking. While our method performs favorably on most of the settings (ex-

cept for ROxf, ROxf+R1M), these results include comparisons to other methods

that differ on the training data used, the CNN backbones, and the number of local

features. For context we provide as much information about each method regarding

these differences.

4.5.8 Limitation

Interpretability. Compared to the homography that explicitly models the align-

ment of the image-pair, the similarity score predicted by our model is less inter-

pretable. In the future, we’d like to extend the work to learning more visual relation
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Figure 4.4: Qualitative examples from Revisited Oxford/Paris [98]. For each query,
the top-3 neighbors ranked by the global retrieval and reranked by RRT are presented.
Correct/incorrect neighbors are marked with green/red borders.

concepts, e.g. homography, dense matching, optical flow, which may lead to more

interpretable results.

Domain shift. In the experiment on the pretrained DELG feature descrip-

tors [16], our method is trained on Google Landmarks v2 [138] and tested on Re-

visited Oxford/Paris [98]. In the experiment on the Stanford Online Products bench-

mark [116], the training and test sets have no overlapping instance categories. Both

experiments demonstrate that the proposed Reranking Transformer can transfer the

knowledge across different instance categories to a certain extent. On the other hand,

similar to all learning-based approaches, our method might have difficulty in handling

large domain shifts. It is also a major challenge for most of the recent approaches

as another key component of the image retrieval pipeline, the feature extractor, may

also suffer from domain shift. Learning transferable feature representation/matching

could be an interesting topic for future research.
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4.5.9 Qualitative Examples

In Fig. 4.4, we present qualitative examples when using only global features and

when using our full reranking approach on Revisited Oxford/Paris [98]. While global-

only retrieval can return highly similar images in general, reranking by global/local

descriptors captures a more fine-grained matching between images, leading to better

recognition accuracy.

In Fig. 4.5, we provide qualitative examples on Stanford Online Products [116].

Here, we compare the results from the global-only model (CO) and the proposed

model (CO + RRT (finetuned)). In particular, we showcase the examples of rigid

objects (e.g. coffee maker, kettle) and deformable objects (e.g. stapler, lamp). The

proposed method outperforms the global-only retrieval on challenging cases such as

partial-matching (example (A)(C)(D)), articulated objects (example (E)(F)), and

irrelevant context (example (B)).

In Fig. 4.6, we provide reranking examples produced by geometry verification and

the proposed Reranking Transformer on Revisited Oxford/Paris [98]. It is shown

that, compared to geometry verification, the proposed method performs favorably

when large viewpoint variations are present. For example, the queries in example (A)

and (B) represent the same landmark but exhibit a large viewpoint change. While

geometry verification predicts two different sets of top neighbors, our model predicts

the same set of top-ranked images for the two queries. Example (E) and (F) also

show some failure cases of our model.

4.6 Summary

In this chapter, we introduce Reranking Transformers (RRTs) as effective reranking

models for instance image retrieval. We show with extensive experiments that the
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Figure 4.5: Qualitative examples from Stanford Online Products [116]. For each
query, the top-3 neighbors predicted by the global-only retrieval and the proposed
Reranking Transformer are presented. Correct/incorrect neighbors are marked with
green/red borders.

proposed method outperforms prior reranking approaches across a variety of settings.

Compared to geometric verification [94] and other local feature based methods [125],

RRTs use much fewer descriptors and can be easily parallelized such that reranking

requires a single neural network forward pass. We also demonstrate that, unlike previ-

ous reranking approaches, RRTs can be optimized jointly with the feature extractor,

which leads to improved accuracy.
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Figure 4.6: Qualitative examples from Revisited Oxford/Paris [98]. For each query,
the top-3 neighbors predicted by geometry verification and the proposed Reranking
Transformer are presented. Correct/incorrect neighbors are marked with green/red
borders.
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Chapter 5

Conclusion

This thesis presents my Ph.D. research on learning local representations of images

and text for visual synthesis, retrieval, and recognition. Here, we summarize the

contributions made in this thesis:

In Chapter 2, we develop a sequence-to-sequence model to generate compositional

image representations from visually descriptive language. The proposed framework is

general and capable to generate various forms of scenes, e.g. cartoon-like images, ob-

ject layouts, composite images. Compared to the GAN-based approaches [40, 56, 143]

resorting to pixel-wise synthesis, the proposed compositional pipeline demonstrates

superior performance in both automatic evaluations and human subject study, while

being more interpretable and data-efficient.

In Chapter 3, we present an effective framework for interactive retrieval of spe-

cific images of complex scenes. The method explores in-depth and addresses several

challenges in multiple round retrievals with natural language queries, e.g. learning

instance-aware features with a compositional text representation. We demonstrate

that the proposed model performs favorably to the existing approaches on two pro-

posed benchmarks: automatic image retrieval on a simulated scenario that uses region

captions as queries, and interactive image retrieval using real queries from human
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evaluators.

In Chapter 4, we propose a novel model which learns to predict the visual sim-

ilarity of an image-pair by analyzing the correlation of both the global and local

representations using a transformer architecture. The proposed method is applied

to the instance image recognition problem. Compared to domain-specific works that

rely on optimizing the matching of large amounts of descriptors, we show that our

approach is more general, more flexible, requires much fewer descriptors but achieves

higher retrieval accuracy, especially for challenging cases.

We hope that the research in this thesis could help inspire future research in vision

and language. Particularly, I would prefer to further explore the research directions

as discussed below:

Compositional Representations for Few-shot Learning. As shown in Chap-

ter 2, learning the pixel level compositionality of visual data requires access to large

amounts of labeled data. This limits the deployment of deep learning models to

the domains where annotations are difficult to collect. The research conducted in

Chapter 2 suggests a new direction: decouple the learning of the hierarchical con-

cepts (e.g. image, event, segment, pixel) into different stages using compositional

representations. I envision that this line of research could be beneficial for few-shot

learning. Potential applications include (1) the analysis of multimodal documents

which contains diagrams, text, tables, listitems, etc; (2) learning visual relationship

(e.g. human-object interaction) presented in images and videos that involves model-

ing the intra-object representations and inter-object correlation.

Learning Generalizable Visual Representations from Language. Depending

on the specific tasks, existing systems typically train different model instances on

different datasets. Consequently, the learned representations may be dramatically
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different even though the models may have similar architectures, or the datasets may

share common concepts, e.g. both ImageNet [30] and COCO [74] contain images of

“cat” and “dog”. I believe this will result in redundant efforts on data annotations

and difficulties in transferring the learned knowledge for different tasks. To address

this problem, I would like to explore learning generalizable visual representations

using common supervised signals from language. On the one hand, it could simplify

the data labeling process to a certain extent as annotations in the form of language

are relatively easy to collect. On the other hand, it could also learn common visual

representations for diverse supervised problems, improving the generalization of the

trained models.
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[18] X. Carreras and L. Màrquez. “Introduction to the CoNLL-2005 shared task:

Semantic role labeling”. In: Proceedings of the ninth conference on computa-

tional natural language learning. Association for Computational Linguistics.

2005, pp. 152–164.

[19] P. Cascante-Bonilla, X. Yin, V. Ordonez, and S. Feng. “Chat-crowd: A Dialog-

based Platform for Visual Layout Composition”. In: Conference of the North

American Chapter of the Association for Computational Linguistics (NAACL-

HLT). 2019.

[20] N.-S. Chang and K.-S. Fu. “A Relational Database System for Images”. In:

Pictorial Information Systems. 1980.

[21] N.-S. Chang and K.-S. Fu. “Query-by-Pictorial-Example”. In: IEEE Trans.

Softw. Eng. 6.6 (Nov. 1980), pp. 519–524.

[22] Q. Chen and V. Koltun. “Photographic Image Synthesis with Cascaded Re-

finement Networks”. In: Int. Conf. Comput. Vis. 2017.

[23] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. “A Simple Framework for

Contrastive Learning of Visual Representations”. In: Int. Conf. Mach. Learn.

2020.
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