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ABSTRACT
This paper presents FaceCollage, a robust and real-time system for
head reconstruction that can be used to create easy-to-deploy telep-
resence systems, using a pair of consumer-grade RGBD cameras
that provide a wide range of views of the reconstructed user. A key
feature is that the system is very simple to rapidly deploy, with
autonomous calibration and requiring minimal intervention from
the user, other than casually placing the cameras. This system is
realized through three technical contributions: (1) a fully automatic
calibration method, which analyzes and correlates the left and right
RGBD faces just by the face features; (2) an implementation that ex-
ploits the parallel computation capability of GPU throughout most
of the system pipeline, in order to attain real-time performance; and
(3) a complete integrated system on which we conducted various
experiments to demonstrate its capability, robustness, and perfor-
mance, including testing the system on twelve participants with
visually-pleasing results.

CCS CONCEPTS
•Computingmethodologies→ Image and video acquisition;
Graphics systems and interfaces; •Applied computing→ Telecom-
munications;
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1 INTRODUCTION
The grand vision in telepresence has always been to provide users
with an immersive 3D experience so real that it would circumvent
the need for people to physically meet face-to-face; it would reduce
the time and cost of travel, bringing people working and living
apart closer together. Various pioneering systems [3, 14, 26] have
been developed over the last two decades, and 3D telepresence
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continues to be a major focus of research, with the well-publicized
Holoportation system [25] being a recent example.

Despite this level of interest, nearly all videoconferencing activ-
ities today are still carried out with 2D systems, often on mobile
devices with embedded cameras and running free software such as
Skype. There are at least two reasons for this. One is technological
cost, as many existing telepresence systems depend on expensive
equipment for real-time and high quality 3D capture; the second is
an effort barrier as such systems typically require extensive cali-
bration and pre-processing, which meant that either they are not
portable and dedicated spaces have to be set aside for system setup,
or the users have to be knowledgeable and prepared to undertake a
lengthy, often tedious setup process. With such systems, it is not
yet practical to have 3D telepresence on-the-go, say in a hotel room
or cafe.

The research in this paper is motivated by our belief that there
is an important demand gap to fill between 2D basic videoconfer-
encing software, and complex 3D telepresence systems. In order to
facilitate personal 3D telepresence, we want to create a system that
is able to capture a user’s head in 3D with decent visual quality and
in real-time; but more importantly one that is easily and rapidly
deployable anytime and anywhere by an average user.

More specifically, the requirements for our 3D head reconstruc-
tion system are: (1) The system needs to run in real-time and be
able to render the reconstructed head with decent visual quality.
Geometric accuracy is less important than visual quality, which im-
pacts the user experience more significantly. (2) We want to avoid
the need to rig high-end sensors such as multi-camera arrays. In-
stead, we plan to rely on a small number (in this paper, only two) of
commodity depth cameras such as the Kinect [1], which facilitates
real-time depth acquisition at low cost. There are already some
existing works [12, 17, 19] using these for telepresence. However,
a major challenge with these depth cameras is substantial noise
and missing data. (3) We want to avoid methods that rely on the
availability of extensive computational power, such as computing
clusters. We instead aim to use only a single desktop or laptop,
leveraging an onboard GPU to meet our computational needs. (4)
Most importantly, we want to avoid the need for an elaborate and
tedious setup procedure for configuring and calibrating various
sensors [11], which is prevalent in existing real-time 3D acquisition
systems. Such a requirement would be beyond the capability and
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Figure 1: Our robust setup: with only two consumer grade
RGBD cameras.

patience of normal users. Instead, we want a system that is poten-
tially simple enough for a general user to set up without requiring
one to tediously reference to a manual.

In this paper, we present a novel solution called FaceCollage to
handle these issues, where a robust GPU-based method is developed
to achieve real-time realistic face capture and composition with a
pair of consumer-level RGBD cameras. FaceCollage has a number
of key advantages over existing systems for on-the-go telepresence:

(1) It is very simple to deploy, which is our key requirement. The
user only needs to casually place the two RGBD cameras
facing the user, as is typified by Fig. 1. Thereafter, our system
will automatically register the RGBD face data from the two
cameras in around 15-30 seconds. Neither user intervention
nor placement of markers (e.g., checkerboard or QR code)
is required in our registration process. We are not aware of
any other multi-sensor 3D telepresence system that has this
level of simplicity in deployment.

(2) Once the devices have been deployed and calibrated, our
method can effectively integrate the two hybrid color&depth
streams acquired from the cameras and generate a live 3D
rendering, covering a wider range of a dynamic face in 3D.

(3) Our method preserves the appearance and expression of
user’s face in real-time. In addition, the system can automat-
ically adapt to sudden movement and progressively restore
the reconstructed face from changes, which is not possible
in many existing systems.

In terms of technical contributions, this paper incorporates three:
(1) We have a fully automatic registration method by iteratively
refining and registering a set of dense correspondences (without us-
ing reference patterns such as checkerboard and QR code) between
the partial face models that the two depth cameras captured. (2)
We leverage parallel computation on the GPU to support real-time
boundary tracking, cross geometry filtering, and texture blending
of the RGBD face data. By adopting CUDA acceleration for geom-
etry processing and GLSL controls in the graphics hardware, we
can capture the appearance and expression of human face with
real-time performance (e.g., 25 fps). (3) we build an integrated 3D
telepresence system and perform several experiments: robustness
of the face registration and system performance. Our system has
also been successfully tested with twelve participants with decent
results.

2 RELATEDWORK
We first review relevant telepresence systems and then methods
for face acquisition and reconstruction.

Pioneering work in 3D telepresence. Raskar et al. [26] proposed a
semi-immersive system by integrating image-based acquisition and
projector displays to create a collaborative office environment; they
used an imperceptible structured light method to capture depth
and reflectance of visible objects and participants. Gross et al. [14]
developed a fully-immersive system (multiple calibrated cameras,
LCD projectors, active illuminations, and head-mounted shutter
glasses) to capture the whole body of a user in a CAVETM-like
environment [10]. Matusik et al. [22] built an end-to-end 3D TV
system that can support multiple users without requiring special
glasses. While these systems offer immersive 3D experience, they
are heavily dependent on high-end equipment, careful engineering
and user calibration.

3D telepresence with depth sensors. Recently, several cost-effective
solutions have been proposed by using low-cost commodity depth
sensors like Kinect [1] and Prime Sense [2]. Maimone et al. [20]
developed a system with six Kinects, where the color and depth
streams from each Kinect were individually processed and blended
together to form a dynamic 3D scene. Kuster et al. [17] introduced
a similar framework with two Kinects and three RGB cameras; an
online segmentation method is developed to restrict the processing
and rendering on foreground objects. Zhang et al. [32] considered
how to present 3D content to remote users, so that users can virtu-
ally see one another as if they shared a common physical space.

While these systems presented visually-pleasing results, they
did not carefully consider the temporal coherency of the surface
geometry and texture, thus usually leading to undesired distraction
during active use. More recently, Kuster et al. [16] proposed a
spatio-temporal fusion method to reconstruct a point set model
of a dynamic scene; however, their method is not real-time yet.
Moreover, all these systems required tremendous engineering effort,
such as deployment and calibration of the fixed devices, which are
nontrivial for general users.

Face capture by structured light and passive stereo. Realistic face
capture with rich facial expressions has been an active research
topic. Early representativeworks such as structured light systems [30,
33] can capture the geometry of a dynamic face in real-time. These
systems were similar to Kinect-based methods [36] since Kinect V1
is inherently a structured light sensor. However, the reconstruction
results were usually of low resolution and cannot sufficiently cover
the human face.

Bradley et al. [6] developed a passive face capture system which
utilized flow-based surface tracking for reconstructing a high reso-
lution time-varying textured face. Beeler et al. [4] devised a similar
single-shot capture method targeting at industrial-quality appli-
cations in movies and computer games, later extended to handle
temporal anchor frames [5]. Although these works offered high-
quality face capture with wrinkles and pores, they were restricted
to studio settings and offline processing, so are not suitable for
real-time 3D telepresence.



Figure 2: Overview of the FaceCollage system: it consists of four key computational stages (see above), from RGBD acquisition
to final rendering.

Template-based face reconstruction. Instead of reconstructing the
geometry of user’s face from 3D depth information, template-based
methods such as [31] focus on approximating the user’s face by fit-
ting the 3D depth data with a pre-trained general 3D face template
model. While state-of-the-art methods [8, 13, 18] can produce fabu-
lous facial animations in real-time, these methods do not preserve
the varying texture and hair of the user since these were not part of
the template model. Recently, Zollhofer and his colleagues [37] pro-
posed a real-time non-rigid 3D face reconstruction method using a
pre-captured 3D face model of the user. However, since the method
relied on a pre-capturing process, it cannot handle dramatic user
movement.

Template-free dynamic reconstruction. Very recently, the Dynam-
icFusion [23] and VolumeDeform [15] systems demonstrated the
superiority of volumetric representation for real-time dynamic re-
construction. While impressive geometric reconstructions were
presented, these systems did not consider the preservation of the
original texture information, which is a critical concern in telep-
resence applications. Also, given the requirement of estimating a
growing warp field, they cannot handle highly dynamic shapes.

3 OVERVIEW
Fig. 2 presents an overview of our system, which has the following
four computational stages:

Stage 1: Acquisition setup. We use two Carmine 1.09 RGBD cam-
eras from PrimeSense [2]. Typically, these two cameras are placed
on the left and right hand sides of the display with the same base-
line; see Fig. 1. Other than tripods, we may also simply mount the
cameras on top of a laptop. Note that each camera can only observe
partial views of the user’s head, due to significant self-occlusion.
Once installed, our system receives two streams of RGBD videos in
VGA resolution (640 × 480) at 25fps from the cameras. Note that
since our current setup can provide plausible frame rate, we do not
need to perform any synchronization.

Stage 2: Auto-registration. Instead of using a tedious calibration
process, e.g., using marker patterns, we have an automatic registra-
tion process, that requires minimal input from the user. First, we
extract two sets of sparse face features simultaneously from the
respective RGBD streams using an image-based face tracker [28].

Using these sparse features, we obtain an initial rough alignment
between the two partial RGBD head models. To improve the align-
ment quality, we propose to estimate the front-facing direction of
a user’s face in a common 3D space and obtain dense correspon-
dences between the two face models using a flow-based method [7].
We can then refine the correspondences and obtain a high-quality
alignment automatically between the two face models (see Fig. 2
stage 2). Except for the initial alignment, which runs on the CPU,
the rest of our method was implemented in CUDA to run on the
GPU, in order to achieve real-time performance.

Stage 3: Depth-assisted boundary tracking. To suppress visual ar-
tifacts resulted from missing data and inaccurate depth acquisition
around the face silhouette, we attempt to maintain a temporally-
consistent boundary, subject to a computational constraint for real-
time performance (see Fig. 2 stage 3). We progressively track and
propagate an evolving boundary around user’s face in each RGBD
stream by adapting and extending a state-of-the-art curve evolving
method [21]. In particular, we incorporate depth information into
the framework not only to provide an initial estimate but also to
constrain the curve evolution, so that our method can restore the
boundary curve even after fast and large deformation.

Stage 4: Cross geometry filtering and texture blending. We further
improve the quality of the composed face model by combining
and completing the geometry and texture of the left and right face
models. Instead of processing the two models separately [17, 20],
we adopt a cross-filtering scheme and use temporal processing to
suppress flickering artifacts. We also exploit redundancy in spa-
tiotemporal data to fill gaps in the face composition as well as to
correct geometrical errors. The rendered textures are composed in
a geometry-aware manner to further enhance quality, and subse-
quently displayed.

The individual stages are described in more detail below.

4 STAGE II: AUTO-REGISTRATION
We employ OpenNI2 [24] to obtain an RGBD video from each of the
two depth cameras. The main goal of this stage is to determine the
extrinsic transformation between the two cameras, so that we can
better align the point clouds of the partial head models extracted
from the cameras. In particular, we aim to avoid tedious calibration



Figure 3: Face alignment in Stage 2: (a&b) the partial face models captured from the left and right views; (c) initial alignment
result; and (d&e) iterative refinement after the first and second iterations. Although face featuresmay not be detected properly
(see the eye regions in this example), we can still produce an initial registration, good enough as an initialization for iterative
refinement. Also note the improvement after the iterative refinement, e.g., around the lip region.

Figure 4: The raw partial face models (RGB & depth) cap-
tured from the left and right views.

with designated patterns [34] (e.g., checkerboard). Instead, we take
a 3D registration approach. Our key idea is to calibrate the two
cameras by directly registering the two partial 3D face models
using an iterative refinement method based on the face features.
Our calibration is fully automatic with high performance. It consists
of the following three main steps.

Step 1: Face Data Collection and Preprocessing. The auto-registration
process starts by extracting 30 consecutive RGBD frames from each

depth camera (view). For each view, our method first locates the
face region by thresholding with depth and merges the frames into
a single depth image by averaging. Next, we reproject the face pix-
els in each depth image (left & right) to 3D as point clouds (partial
face models) using the intrinsic camera parameters provided by
OpenNI2, see Fig. 4 for results. To initiate the auto-registration
process, the user only need to click one button in the user inter-
face, while facing both cameras and remaining still for one to two
seconds to avoid motion blur in the meantime.

Step 2: Initial Face Alignment. Registering two 3D point clouds
with partial overlap without any prior information is a nontrivial
problem. Fortunately, we have a strong prior that faces are a key part
of the head models we want to register, and thus we can initialize
the registration by taking advantages of various sparse face features
extracted from the models.

To do so, we propose to first fit a 2D face template to each color
image from the two cameras by [28]. We can then extract a set
of face features per color image and compute the correspondence
between face pixels in the two color images by using the extracted
sparse face features. Since there is a one-to-one correspondence
between the color pixels and the point cloud, we can further esti-
mate an initial alignment (a rigid transformation) between the two
partial face models by an SVD method [27], see Fig. 3(a-c) for an
example.

Step 3: Iterative Refinements. Due to depth noise and sparsity of
face features, registration using only facial features is not sufficient
(see Fig. 3(c)). To overcome this problem, we propose to further
find dense correspondences to refine the alignment. In particular,
we first determine the front view, at which the rendered images
from both left and right head models will have large overlap. This
is done by applying PCA on those 3D points around face centers,
where the smallest eigenvector of the covariance matrix is chosen
as the front view direction of the face D.

Given the front view direction D, we then average the 30 color
images collected from each view in step 1 to obtain a mean image
per view. We map these images to the corresponding point cloud,



and render each point cloud along D: IDL and IDR are the resulting
images from the left and right views, respectively (see Fig. 3(a&b)),
whileZD

L andZD
R are the corresponding point clouds. It can be seen

from Fig. 3(a&b) that there is a large number of missing face pixels,
which is either due to partial camera view or caused by the noise and
interference. Thesemissing pixels can be easily identified by looking
for pixels with invalid depth values. To stabilize the registration,
we make use of the correspondence IDL ↔ ZD

L ↔ ZD
R ↔ IDR to

fill invalid pixels in IDL with pixel values from associated locations
in IDR , and vice versa.

Next, we compute dense correspondences between IDL and IDR
by minimizing the Horn-Schunck energy [7]:

E(w) =

∫
Ω
ψ(|IDL (x +w) − IDR (x)|2) dx +∫

Ω
αψ(|∇IDL (x +w) − ∇IDR (x)|2) dx +∫

Ω
β |∇w |2 dx , (1)

where Ω is the image domain,w is the optimal displacement field
(dense correspondences) between IDL and IDR , ψ is a nonlinear
mapping function, and α and β are tradeoff parameters. With dense
correspondences, we can then apply the SVD method [27] again to
obtain a more accurate rigid transformation. Note that we use all
pixels in the optimization of (1) to enforce regularization, but only
use the correspondences of the valid pixels to refine the alignment.

We perform the refinement iteratively. Since the initial face align-
ment has already brought the two partial head models close enough
to each other, we found that two to three iterations are sufficient to
produce good alignment results (see Fig. 3(d&e)). In our system, we
implemented a CUDA program to compute the optimal displace-
ment field in parallel, so as to efficiently perform the warping flow
procedure [7]. We set α=0.1, β=0.1,ψ(s2)=

√
s2 + ϵ2, and ϵ = 0.001

in (1) for all experiments.

5 STAGE III: DEPTH-ASSISTED BOUNDARY
TRACKING

In addition to the problem of noisy depth measurements delivered
by commodity depth sensors, another problem typically encoun-
tered is that object silhouettes in depth and color images are not
accurately aligned [16], which often causes annoying flicking ef-
fects around head silhouettes. Theoretically, we can adopt off-the-
shelf real-time RGBD segmentation methods to tackle this problem.
However, generic methods such as [35] often require large amounts
of computing resource, hindering the overall performance of our
system. This provides motivation for developing an effective and
efficient boundary tracking method tailored for our application,
which can locally re-align the depth and the color images in each
camera view across the time.

In our study, we observe that the non-alignment artifacts usually
occur in a narrow spatial band near the true silhouette of the head,
where reliable textures are available. This led to our proposal to
evolve the curve of the depth silhouette towards the local contour of
the color image, subject to constraints such as depth discontinuity.
In particular, we adopt a recent active contour model [21], wherein

the curve C is implicitly represented as the zero crossing of a level
set function, C(t) = {x |u(x , t) = 0}, and evolved by minimizing the
GAC energy functional [9]:

E(C) =
∫ lenдth(C)

0
д(I )(C(s))ds , (2)

where д(I ) is an edge detection function defined as

д(I ) = 1√
1 + α |∇I |

, (3)

with α = 1000. The local minima to (2) is reached at the steady
states of the differential equation:

∂u

∂t
= (K + υ) · д(I )|∇u | + ∇д(I )∇u , (4)

where K = div( ∇u
|∇u | ) is the Euclidean curvature of C, and υ = 1 is

a balloon weight. Eq. (2) can be solved numerically by successively
applying the flow given by (4), while the υ · д(I )|∇u | term and the

Figure 5: Boundary tracking results in Stage 3: (a&b) ex-
tracted by simply thresholding the raw depth input; (c&d) re-
sultswith pure [21], produced by their released source codes;
and (e&f) depth-assisted contour tracking.



K · д(I )|∇u | term can be approximated by a dilation operator and a
discrete morphological curvature operator, respectively [21].

While the morphological approach is simple and fast, it is only
applied to textures. Since depth is available, we extend the method
to handle the captured RGBD data with the following additional
modifications:

1) To generate the initial curve un+1(x , 0) in the (n+1)-th frame,
we first compute a binary maskMn+1(x) by thresholding the input
depth map, and then set

un+1(x , 0) =
1
2
(
Mn+1(x) + un (x)

)
, (5)

where un (x) is the output curve of the n-th frame. In this way, we
will not only incorporate depth information into the evolution of
the curve, but also obtain temporally more consistent results across
frames.

2) Instead of the morphological curvature operator, we use a
joint bilateral filter over u(x) to smooth the curve with both color
and depth information.

Fig. 5 shows some boundary tracking results. We can see that
compared to purely applying [21], our method is more robust and
less sensitive to the initialization.

6 STAGE IV: CROSS-GEOMETRY FILTERING
AND TEXTURE BLENDING

Given the refined boundary from the previous stage, the purpose
of this stage is to remove artifacts and fill in the holes within the
boundary, as well as to combine the geometry and textures of the
two views in a consistent manner. This stage consists of the fol-
lowing three steps. Note that, these three steps are only applied to
pixels within the region inside the refined boundary. This can be
achieved by incorporating a masking operation in each step.

Step 1: Geometry preprocessing for removing artifacts. Due to
the low output quality of commodity sensors, the raw depth data
exhibits obvious artifacts such as isolated patches and holes. To
remove isolated patches, our method first examines a small local
neighborhood around each pixel. Specifically, for each pixel pi , we
extract the 3D coordinates Pj of pixels within an N × N window
around pi , and count the number of pointsCi that are at a distance
between rin and rout from Pi (the 3D coordinates of pi ):

Ci =
1

|N (Pi )|
∑

Pj ∈N (Pi )
I (rin < ∥Pj − Pi ∥ < rout ) , (6)

where I (·) is an indicator function and N (Pi ) is a set of valid pixels
within the local window around pi . Intuitively, if pi belongs to
an isolated patch, Ci is small. Thus, if Ci is smaller than a preset
threshold Ct , we will remove pi . In all our experiments, we set
N = 41, rin = 0.02, rout = 0.08, and Ct =

100
N ·N ≈ 0.06. Fig. 6

shows representative results of the isolated patch removal substep.
To fill the missing data caused by the sensors and the removal of

isolated patches, we observe that holes in one view can be reason-
ably compensated using data from the other view. Thus, our method
synthesizes a new depth map Dṽ0 under view v0 by rendering the
geometry of its counterpart view using the calibration parameters
estimated in Section 4. The missing data in the raw depth map Dv0

under view v0 can then be filled in by using Dṽ0 . Fig. 6 shows some
example results of hole filling. Any remaining unfilled hole will be
left for the subsequent step to handle.

Step 2: Cross filtering for geometry consistency. At this point we
have two well-aligned depth maps with reasonable but not yet the
best possible quality. We further reinforce the spatial and temporal
consistency by applying a cross-filtering process in geometry. For
each view V , we denote the preprocessed depth map at time t as
dV (x, t) and texture as cV (x, t). Similar to the idea introduced in the
hole-filling step, our method warps the depth map and the texture
of the other view to V to obtain dṼ (x, t) and cṼ (x, t). Our method
performs a spatial-temporal filtering as

fV (x, t) =
1

N(x,t )

∑
(x′,t ′)∈N(x,t )

(wc wd ws dV (x′, t ′)

+ w̃c w̃d w̃s dṼ (x
′, t ′)), (7)

where

wc = exp(− cV (x′, t ′) − cV (x, t)
2σ 2

c
) ,

w̃c = exp(−
cṼ (x

′, t ′) − cV (x, t)
2σ 2

c
) ,

wd = exp(−dV (x′, t ′) − dV (x, t)
2σ 2

d

) ,

w̃d = exp(−
dṼ (x

′, t ′) − dV (x, t)
2σ 2

d

) , and

ws = w̃s = exp(− ∥x′ − x∥2 + (t ′ − t)2

2σ 2
s

) .

In Eq. (7), N(x,t ) is the weight normalization term,wc ,wd andws
are the color range kernel, the depth range kernel and the spatial-
temporal kernel, respectively, similar to the joint bilateral filter,
while w̃c , w̃d and w̃s are the respective kernels for the wrapped
depth map from the other view. Hence, our cross-view filtering
method performs a volume filtering in spatial-temporal depth space,
incorporating the geometry and texture of both views. Here, we set
the spatial window size of the filtering to 5, the temporal window
size to 3, and the kernel sizes σc = 0.05 (within a normalized color
range of [0,1]), σd = 0.006 and σs = 1.0 for all experiments.

Step 3: Alpha blending for texture consistency. Finally, we adopt
the standard view-dependent alpha blending technique to blend
the textures from both views:

I (P) =
w1 · Il (P) +w2 · Ir (P)

w1 +w2
, (8)

w1 = (nP ◦vl )2 , (9)
w2 = (nP ◦vr )2 , (10)

where I (P) represents the output at position P from the fragment
shader, Il (P) and Ir (P) are the texture inputs at position P , nP is
the unit normal of position P , and vl and vr are the unit direction
vectors of the two cameras.



Figure 6: Filtering and texture blending: (a&e) the partial face models before boundary refinement. Please see the inconsistent
boundary and the isolated patches circled in red; (b&f) the partial face models after refining the boundary and removing the
isolated patches; (c&g) the partial face models after hole filling; and (d&h) the collaged face models after cross filtering and
texture blending.

7 EXPERIMENTAL RESULTS
7.1 Implementation
As stated previously, most components in our pipeline were pro-
grammed and run on the GPU, except the initial face alignment,
which is step 2 in Stage 2. Specifically, we used the OpenNI2 pack-
age to read data streams from the sensors, and implemented the
rest of the steps of Stage 2, Stage 3 and the cross-geometry filtering
step of Stage 4 in CUDA, while the alpha blending step was imple-
mented in GLSL. Our system successfully ran on two systems: i) a
desktop with an Intel Core i7 CPU, 16GB RAM and a GTX TITAN
GPU, and also ii) an Apple MacBook Pro 2013 with a GeForce GT
650m. The results presented in this section are produced using the
desktop system, which achieves a frame rate of 25 fps, while the
laptop system runs at 15 fps with similar quality in the results.

7.2 Results
We tested our system with 12 participants. The results of individual
components have been shown in Figs. 3, 5 and 6. Representative
visual results for the final outputs are shown in Fig. 7. It can be
seen that our system achieves decent visual quality for the collaged
3D faces from stereo depth cameras. To best appreciate the actual
experience of setting up and using this system, please refer to the
supplementary video for more results as well as records of a live
demonstration. To the best of our knowledge, we are not aware
of any other existing system that can be rapidly deployable and

yet achieves real-time 3D head reconstruction (particularly from
multiple RGBD video streams) with similar quality.

Time performance. We also evaluated the average execution time
of each key component in our system, as shown in Table 1. For the
auto-registration part, the actual execution time varied between
13 - 32 seconds in our experiments due to different numbers of
iterations required. However, the user only need to do this step
once after putting up the system. After the registration, our system
processes each frame in 39.56 ms and achieved 25 frames per second
with an output resolution of 1024x768. We encourage the reader to
watch the supplementary video, which demonstrates the efficiency
and the robustness of our system.

Limitations. There are still several limitations in our current sys-
tem that may inspire future work. First, the usage of commodity
sensors limits the display resolution and RGB quality captured. Sec-
ond, in a few rare cases (e.g., poor lighting condition) when the
user’s face cannot be successfully detected, our system could fail
to register the data from the two RGBD sensors. This can be fur-
ther improved by adopting more robust face detection and tracking
methods that incorporate not only textural but also geometrical
cues [29]. Third, however efficient, the boundary tracking method
cannot handle scenes with excessively complex background. Also,
when handling dramatic user movement, our method exhibits syn-
chronization artifacts before restoring the reconstructed face. This



Figure 7: Qualitative examples of the final output of our system from different viewpoints. Please refer to the supplementary
video for animated versions of these results.

Table 1: Average running time of each key component in our
system; note that auto-registration is a one-time process.

is a common problem for per-frame reconstruction methods, which
deserve further research.

8 CONCLUSION
In this paper, we presented FaceCollage, a robust and real-time
method for 3D telepresence using a pair of consumer-grade RGBD
cameras. Ourmethod is built upon a series of four carefully-designed
working stages: data acquisition, auto-registration, depth-assisted
boundary tracking, and cross-geometry filtering and texture blend-
ing. These stages are mostly implemented and developed on the
GPU to best trade-off between quality and real-time performance.
To demonstrate the efficiency and robustness of our work, we built
a prototype system and tested it with twelve participants. Our sys-
tem shows very promising results that have not be seen in any of
the existing consumer-grade RGBD cameras based real-time face
composition systems. It provides a new solution, which is robust
and affordable, for personal 3D telepresence.
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