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The Power of Self-supervised Learning (SSL)
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Diagnosing SSL for Lightweight Networks

Previous consensus:
Capacity bottleneck

Our finding:
Model complexity vs
regularization strength

Views with different “crop scales”

Aligning views
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Contributions

* Revisit SSL in low-compute pre-training, showing that lightweight networks
can learn high-quality visual representations using self-supervised signals
alone, without knowledge distillation.

* Demonstrate that SSL low-compute pre-training benefits from a weaker
self-supervised target aligning views in similar spatial scales and contexts.

* Training recipes enhance various SSL methods (e.g., MoCo-v2, SWAYV,
DINO) across low-size networks, including CNNs (e.g., MobileNetV2,
ResNet |8, ResNet34) and ViT-Ti, outperforming state-of-the-art
distillation-based approaches.
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Views with different “pixel scales”
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The best performance achieves when the views have
similar pixel scales (i.e. mean(PS;/PS,;) =~ 1.0).

Rebalance the global and local losses

L;: loss between a pair of global-local views

L,: loss between two global views
P, 4: # of global-global view pairs

Py, : # of global-local view pairs

default setting
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Effective Self-supervised Pre-training for Low-compute Networks without Distillation

Improving Representative SSL approaches

Representative SSL w.
MobileNetV2 [Sandler et al.]
as the backbone

MoCo-v2 [Chen et al ] Baseline
w. local views Ours
Baseline
SWAV [Caron et al.]
Ours
Baseline
DINO [Caron et al.]
Ours

Supervised

Top-1 (%)

60.6
61.6 (+1.0)
65.2
67.3 (+2.1)
66.2
68.3 (+2.1)
71.9

Linear evaluation on ImageNet- 1K

Top-5 (%)
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Improving Representative Visual Backbones
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Improving Downstream Applications

Mask R-CNN FPN Ix on COCO

Semi-supervised Learning on ImageNet- 1K

Backbone Method
Obiject Det. Instance Seg. | % label 10% label
Supervised 33.1 29.8 - -
MobileNetV2 DINO baseline 30.9 28.1 47.9 61.3
DINO + Ours 32.1 (+1.2) 29.1 (+1.0) 50.6 (+2.7) 63.5 (+2.2)
Supervised 34.5 31.6 - -
ResNetl8 DINO baseline 32.7 30.6 44.5 59.2
DINO + Ours 34.1 (+1.4) 31.8 (+1.2) 49.8 (+5.3) 63.0 (+3.8)
Supervised 38.7 35.0 - -
ResNet34 DINO baseline 37.6 34.6 524 65.4
DINO + Ours 38.6 (+1.0) 35.5 (+0.9) 55.2 (+2.8) 67.2 (+1.8)
o o
Comparing to SOTA, all with KD
Linear evaluation on ImageNet- K
Method MobileNetV?2 ResNet |8 ResNet34
Top-1 Top-5 Top-I Top-5 Top-I Top-5
Supervised 71.9 90.3 69.8 89.1 73.3 91.4
CompRess 65.8 62.6
SimReg 69.1 65.1 - - -
SEED 63.0 84.9 65.7 86.8
DisCo 65.2 86.8 67.6 88.6
BINGO - - 65.5 87.0 68.9 89.0
Ours 68.8 87.8 66.8 87.3 70.8 90.0




