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Self-supervised learning (SSL) on low-compute networks

The power of SSL is 

unlocked for 

large visual backbones

[Tomasev et al]

[Tomasev et al.] Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet? ICMLW 2022
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KD w different losses

Pre-trained Teacher

Student

KD loss

Pros
• Re-use strong teachers
• Easier to optimize

Cons
• New pre-training data
        - Teacher pre-training

• New on-device tasks
        - Continual Learning
        - Federated Learning
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State-of-the-art SSL

[Chen et al.] Improved Baselines with Momentum Contrastive Learning. 

[Caron et al.] Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. NeurIPS 2020.

[Caron et al.] Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.
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[Chen et al.]
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Feature matching
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Self-supervision:
aligning different views of the same image

A form of “regularization”
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Diagnosing SSL for lightweight networks

SSL

Our finding:

Model complexity vs 

regularization strength

Large networks

Small networks

Aligning views

of diverse scales & contexts

Previous consensus:

Capacity bottleneck



Aligning views of different

“crop scales”

Regularization strength: from the view matching perspective

Global view B:

𝑆𝑔 ~ 1.0

the area of A

Image A

Local view B:

0.05 ~ 𝑆𝑙
the area of A

𝑆𝑔, with 𝑆𝑙 set to 0.14 (default value)
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default setting

𝑆𝑙, with 𝑆𝑔 set to 0.3 (optimal value)
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Aligning views of different

“pixel scales”

Regularization strength: from the view matching perspective

300 x 300

180 x 180

224 x 224

96 x 96

𝑃𝑖𝑥𝑒𝑙 𝑠𝑐𝑎𝑙𝑒 =
𝑡𝑎𝑟𝑔𝑒𝑡 𝑟𝑒𝑠.

𝑠𝑜𝑢𝑟𝑐𝑒 𝑟𝑒𝑠.

224 × 224

300 × 300
≈ 0.56

96 × 96

180 × 180
≈ 0.28

68.0

64.0

1.0 2.0

60.0

0.0

𝑆 = 𝑆𝑔 = 𝑆𝑙
𝐿𝐶: target res. of the local views

The best performance achieves when the views have similar pixel scales 

(i.e. 𝑚𝑒𝑎𝑛(𝑃𝑆𝑙/𝑃𝑆𝑔) ≈ 1.0).

𝑚𝑒𝑎𝑛(𝑃𝑆𝑙/𝑃𝑆𝑔)

𝑃𝑆𝑙, 𝑃𝑆𝑔: pixel scale of global & local views



Re-balance 

the global and local losses

Regularization strength: from the view matching perspective

𝐿𝑔: loss between two global views

𝐿𝑙: loss between a pair of global-local views

Default formulation Our formulation

𝑃𝑔𝑔: # of global-global view pairs

𝑃𝑔𝑙: # of global-local view pairs

𝐿 =
𝐿𝑔 + 𝐿𝑙

𝑃𝑔𝑔 + 𝑃𝑔𝑙
𝐿 = 𝛼 ∙

𝐿𝑔

𝑃𝑔𝑔
+ 1 − 𝛼 ∙

𝐿𝑙
𝑃𝑔𝑙

68.0

69.0

0.2 0.4

67.0

66.0

65.0

𝛼

𝑆 = 𝑆𝑔 = 𝑆𝑙
𝐿𝐶: target res. of the local views



Improve representative SSL approaches

Representative SSL w. 

MobileNetV2 [Sandler et al.]

as the backbone

Linear evaluation on ImageNet-1K

Top-1 (%) Top-5 (%)

MoCo-v2 [Chen et al.] 

w. local views

Baseline 60.6 83.3

Ours 61.6 (+1.0) 84.2 (+0.9)

SwAV [Caron et al.] 

Baseline 65.2 85.6

Ours 67.3 (+2.1) 87.2 (+1.6)

DINO [Caron et al.] 

Baseline 66.2 86.4

Ours 68.3 (+2.1) 87.8 (+1.4)

Supervised 71.9 90.3

[Sandler et al.] MobileNetV2: Inverted Residuals and Linear Bottlenecks

[Chen et al.] Improved Baselines with Momentum Contrastive Learning. 

[Caron et al.] Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. NeurIPS 2020.

[Caron et al.] Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.



Improve representative visual backbones

Method
Linear evaluation on ImageNet-1K

Top-1 (%)

MobileNetV2
#Par.2.2M, GFLOPS 0.31

ResNet18
#Par.11.2M, GFLOPS 1.8

ResNet34
#Par.21.3M, GFLOPS 3.7

ResNet50
#Par.23.5M, GFLOPS 4.1

ViT-T/32
#Par. 5.5M, GFLOPS 0.31

ViT-T/16
#Par. 5.5M, GFLOPS 1.26

ViT-S/16
#Par.21.7M, GFLOPS 4.6

Supervised 71.9 69.8 73.3 76.1 - 72.2 79.9

DINO baseline 66.2 62.2 67.7 73.4 55.4 66.7 75.4

DINO + Ours 68.3 (+2.1) 65.7 (+3.5) 69.7 (+2.0) 73.4 (+0.0) 60.1 (+4.7) 69.5 (+2.8) 76.1 (+0.7)

ResNet18 ResNet34 ResNet50

+3.5

+2.0

+0.0DINO

Ours

60

65

70

Top-1

Accu.

ViT-S/16ViT-T/16ViT-T/32

+0.7

+2.8

+4.7

DINO

Ours
70

60

50

Top-1

Accu.

The improvement is 

larger for smaller 

networks



Improve downstream applications

Backbone Method
Mask R-CNN FPN 1x on COCO Semi-supervised Learning on ImageNet-1K

Object Det. Instance Seg. 1% label 10% label

Supervised 33.1 29.8 - -

MobileNetV2 DINO baseline 30.9 28.1 47.9 61.3

DINO + Ours 32.1 (+1.2) 29.1 (+1.0) 50.6 (+2.7) 63.5 (+2.2)

Supervised 34.5 31.6 - -

ResNet18 DINO baseline 32.7 30.6 44.5 59.2

DINO + Ours 34.1 (+1.4) 31.8 (+1.2) 49.8 (+5.3) 63.0 (+3.8)

Supervised 38.7 35.0 - -

ResNet34 DINO baseline 37.6 34.6 52.4 65.4

DINO + Ours 38.6 (+1.0) 35.5 (+0.9) 55.2 (+2.8) 67.2 (+1.8)



Compare to SOTA, all with Knowledge Distillation

Method

Linear evaluation on ImageNet-1K

MobileNetV2 ResNet18 ResNet34

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Supervised 71.9 90.3 69.8 89.1 73.3 91.4

CompRess
[Koohpayegani et al.] 

65.8 - 62.6 - - -

SimReg
[Navaneet et al.] 

69.1 - 65.1 - - -

SEED 
[Fang et al.] 

- - 63.0 84.9 65.7 86.8

DisCo
[Xu et al.] 

- - 65.2 86.8 67.6 88.6

BINGO 
[Gao et al.] 

- - 65.5 87.0 68.9 89.0

Ours 68.8 87.8 66.8 87.3 70.8 90.0

[Koohpayegani et al.] CompRess: Self-Supervised Learning by Compressing Representations. NeurIPS 2020.

[Navaneet et al.] SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation. BMVC 2021.

[Fang et al.] SEED: Self-supervised Distillation for Visual Representation. ICLR 2021.

[Xu et al.] Bag of Instances Aggregation Boosts Self-supervised Distillation. ICLR 2022.

[Gao et al.] DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning. ECCV 2022.



Thank you!

https://github.com/saic-fi/SSLight
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