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Self-supervised learning (SSL) on low-compute networks
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[Tomasev et al.] Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet? ICMLW 2022
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[Koohpayegani et al.] CompRess: Self-Supervised Learning by Compressing Representations. NeurlPS 2020.

[Fang et al.] SEED: Self-supervised Distillation for Visual Representation. ICLR 2021.

[Xu et al.] Bag of Instances Aggregation Boosts Self-supervised Distillation. ICLR 2022.

[Gao et al.] DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning. ECCV 2022.



Previous research

KD w different losses

Pros
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KD loss
Student —T Cons s e
« New pre-training data
TTTY NN - Teacher pre-training
Capacity [Koohpayegani et al.] - New on-device tasks
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[Xu et al.] - Federated Learning
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[Koohpayegani et al.] CompRess: Self-Supervised Learning by Compressing Representations. NeurlPS 2020.

[Fang et al.] SEED: Self-supervised Distillation for Visual Representation. ICLR 2021.

[Xu et al.] Bag of Instances Aggregation Boosts Self-supervised Distillation. ICLR 2022.

[Gao et al.] DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning. ECCV 2022.



State-of-the-art SSL

Self-supervision:
aligning different views of the same image
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Contrastive learning
[Chen et al.]
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Global views
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Clustering
[Chen et al.] Improved Baselines with Momentum Contrastive Learning.

[Caron etal.]

Feature matching

[Caron et al.]
[Caron et al.] Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. NeurlPS 2020.
[Caron et al.] Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.
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[Chen et al.] Improved Baselines with Momentum Contrastive Learning

[Caron et al.] Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. NeurlPS 2020
[Caron et al.] Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021
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Diagnosing SSL for lightweight networks
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Diagnosing SSL for lightweight networks

Aligning views

of diverse scales & contexts
==
’ .’_: EEER ’ SSL

[Large networks @ J

Previous consensus:
Capacity bottleneck

Our finding:
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Regularization strength: from the view matching perspective
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Regularization strength: from the view matching perspective
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Regularization strength: from the view matching perspective
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Improve representative SSL approaches

Representative SSL w.

Linear evaluation on ImageNet-1K

MobileNetV2 [Sandler et al.]
as the backbone Top-1 (%) Top-5 (%)
MoCo-v2 [Chen et al ] Baseline 60.6 83.3
w- local views Ours 61.6 (+1.0) 84.2 (+0.9)
Baseline 65.2 85.6
SWAV [Caron et al ]
Ours 67.3 (+2.1) 87.2 (+1.6)
Baseline 66.2 86.4
DINO [Caron et al]
Ours 68.3 (+2.1) 87.8 (+1.4)
Supervised 71.9 90.3

[Sandler et al.] MobileNetV2: Inverted Residuals and Linear Bottlenecks

[Chen et al.] Improved Baselines with Momentum Contrastive Learning.

[Caron et al.] Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. NeurlPS 2020.
[Caron et al.] Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.



Improve representative visual backbones

Linear evaluation on ImageNet-1K

Method
Top-1 (%)
MobileNetV2 ResNet!8 ResNet34 ResNet50 ViT-T/32 ViT-T/16 ViT-S/16
#Par.2.2M, GFLOPS 0.31 #Par.11.2M, GFLOPS 1.8 #Par.21.3M, GFLOPS 3.7 #Par.23.5M, GFLOPS 4.1 #Par. 5.5M, GFLOPS 0.31 #Par. 5.5M, GFLOPS 1.26 #Par.21.7M, GFLOPS 4.6
Supervised 71.9 69.8 73.3 76.1 - 72.2 79.9

DINO baseline 66.2 62.2 67.7 734 55.4 66.7 75.4
DINO + Ours 68.3 (+2.1) 65.7 (+3.5) 69.7 (+2.0) 73.4 (+0.0) 60.1 (+4.7) 69.5 (+2.8) 76.1 (+0.7)

Top-1 Top-1

Accu. B DINO 0.0 Accu. I DINO

+0.7

ResNet18 ResNet34 ResNet50 VIiT-T/32 ViT-T/16 ViT-S/16

B ours B ours
70 70
The improvement is
larger for smaller
networks . .
o -




Improve downstream applications

Mask R-CNN FPN Ix on COCO

Semi-supervised Learning on ImageNet- 1K

Backbone Method
Object Det. Instance Seg. 1% label 10% label
Supervised 33.1 29.8 - -
MobileNetV2 DINO baseline 30.9 28.1 479 61.3
DINO + Ours 32.1 (+1.2) 29.1 (+1.0) 50.6 (+2.7) 63.5 (+2.2)
Supervised 345 31.6 - -
ResNet|8 DINO baseline 327 30.6 44.5 59.2
DINO + Ours 34.1 (+1.4) 31.8 (+1.2) 49.8 (+5.3) 63.0 (+3.8)
Supervised 38.7 350 - -
ResNet34 DINO baseline 37.6 34.6 52.4 65.4
DINO + Ours 38.6 (+1.0) 355 (+0.9) 55.2 (+2.8) 67.2 (+1.8)




Compare to SOTA, all with Knowledge Distillation

Linear evaluation on ImageNet-IK

Method MobileNetV2 ResNet|8 ResNet34
Top-1 Top-5 Top-I Top-5 Top-I Top-5
Supervised 71.9 90.3 69.8 89.1 733 91.4
CompRess 65.8 ) 62.6 ) } )
[Koohpayegani et al.] ' :
SimReg 69.1 . 65. 1 - - -
[Navaneet et al.]
[FSEgEDI] . . 63.0 84.9 65.7 86.8
'[z'scg . . 65.2 86.8 67.6 88.6
'?G'NG? . . 65.5 87.0 68.9 89.0
Ours 68.8 87.8 66.8 87.3 70.8 90.0

[Koohpayegani et al.] CompRess: Self-Supervised Learning by Compressing Representations. NeurlPS 2020.
[Navaneet et al.] SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation. BMVC 2021.
[Fang et al.] SEED: Self-supervised Distillation for Visual Representation. ICLR 2021.

[Xu et al.] Bag of Instances Aggregation Boosts Self-supervised Distillation. ICLR 2022.

[Gao et al.] DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning. ECCV 2022.



Thank you!
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