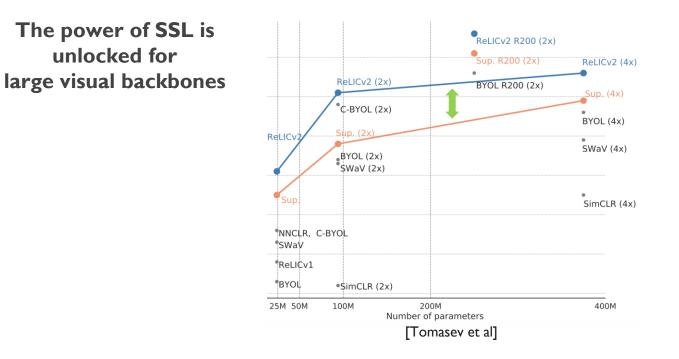
Effective Self-supervised Pre-training on Low-compute Networks without Distillation

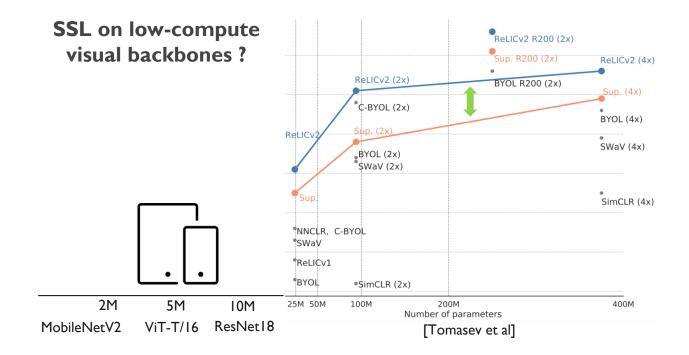
Fuwen Tan Samsung Al Center Fatemeh Saleh Microsoft Brais Martinez Samsung Al Center

Self-supervised learning (SSL) on low-compute networks



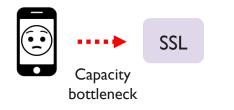
[Tomasev et al.] Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet? ICMLW 2022

Self-supervised learning (SSL) on low-compute networks

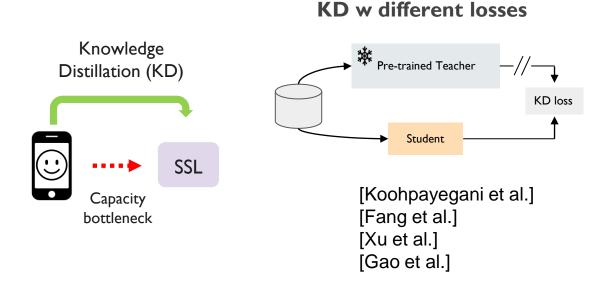


[Tomasev et al.] Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet? ICMLW 2022

Previous research

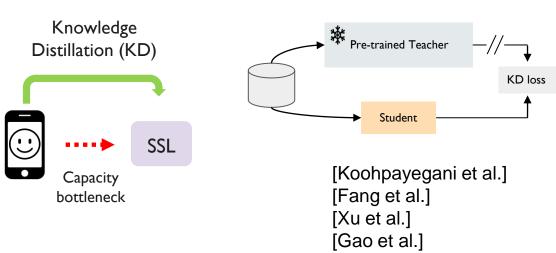


Previous research



[Koohpayegani et al.] CompRess: Self-Supervised Learning by Compressing Representations. *NeurIPS 2020.* [Fang et al.] SEED: Self-supervised Distillation for Visual Representation. *ICLR 2021.* [Xu et al.] Bag of Instances Aggregation Boosts Self-supervised Distillation. *ICLR 2022.* [Gao et al.] DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning. *ECCV 2022.*

Previous research



KD w different losses

Pros

- Re-use strong teachers
- Easier to optimize

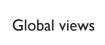
Cons

- New pre-training data
 Teacher pre-training
- New on-device tasks
 Continual Learning
 Federated Learning

[Koohpayegani et al.] CompRess: Self-Supervised Learning by Compressing Representations. *NeurIPS 2020.* [Fang et al.] SEED: Self-supervised Distillation for Visual Representation. *ICLR 2021.* [Xu et al.] Bag of Instances Aggregation Boosts Self-supervised Distillation. *ICLR 2022.* [Gao et al.] DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning. *ECCV 2022.*

State-of-the-art SSL

Image A



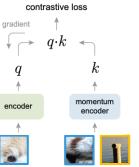
Local views

Image B

Global views

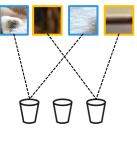
Local views

Self-supervision: aligning different views of the same image



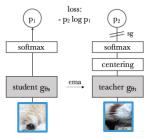
Contrastive learning

[Chen et al.]



Clustering

[Caron et al.]



Feature matching [Caron et al.]

[Chen et al.] Improved Baselines with Momentum Contrastive Learning. [Caron et al.] Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. *NeurIPS 2020*. [Caron et al.] Emerging Properties in Self-Supervised Vision Transformers. *ICCV 2021*.

State-of-the-art SSL

Image A

Global views

Local views

gradient

q

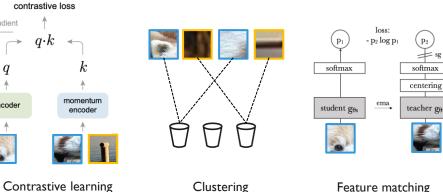
encoder

[Chen et al.]

Image B

Local views

Self-supervision: aligning different views of the same image



[Caron et al.]

Feature matching [Caron et al.]

 \mathbf{p}_2

A form of "regularization"

[Chen et al.] Improved Baselines with Momentum Contrastive Learning. [Caron et al.] Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. NeurIPS 2020. [Caron et al.] Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

Diagnosing SSL for lightweight networks

Previous consensus: Capacity bottleneck

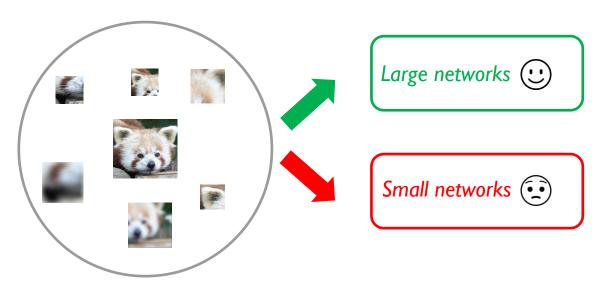
Our finding: Model complexity vs regularization strength Diagnosing SSL for lightweight networks

Aligning views of diverse scales & contexts

Previous consensus: Capacity bottleneck

SSL

Our finding: Model complexity vs regularization strength



Regularization strength: from the view matching perspective

Aligning views of different "crop scales"

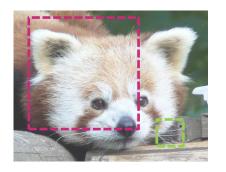
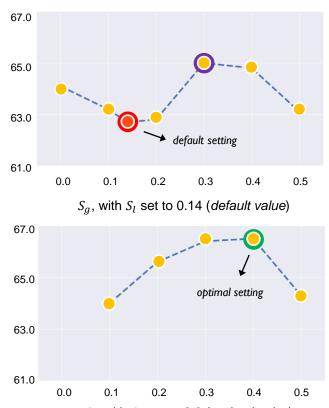


Image A

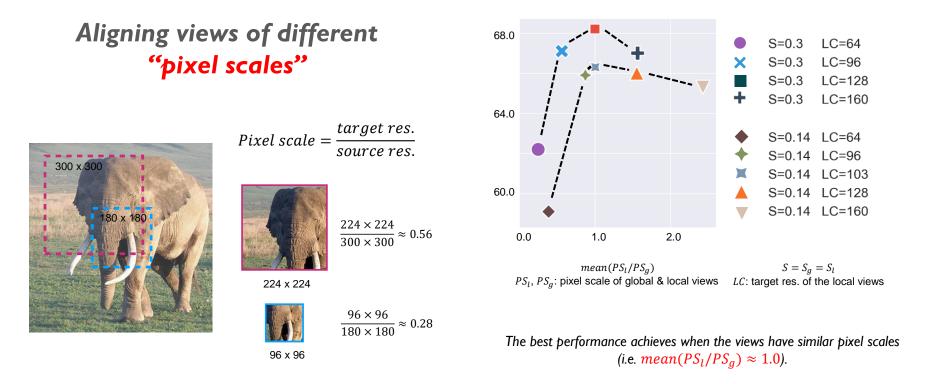
Global view B: $S_g \sim 1.0$ the area of A

Local view B: $0.05 \sim S_l$ the area of A



 S_l , with S_g set to 0.3 (optimal value)

Regularization strength: from the view matching perspective



Regularization strength: from the view matching perspective

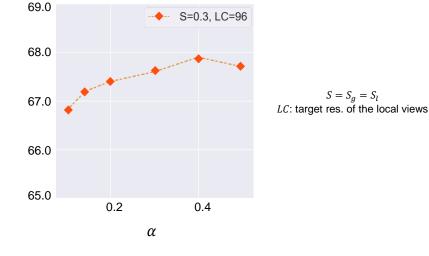
Re-balance the global and local losses

 L_g : loss between two global views L_l : loss between a pair of global-local views P_{gg} : # of global-global view pairs P_{gl} : # of global-local view pairs

Default formulation

Our formulation

$$L = \frac{L_g + L_l}{P_{gg} + P_{gl}} \qquad L = \alpha \cdot \frac{L_g}{P_{gg}} + (1 - \alpha) \cdot \frac{L_l}{P_{gl}}$$



Improve representative SSL approaches

Representative SSL w. MobileNetV2 [Sandler et al.]		Linear evaluation on ImageNet-IK		
as the back	-	Top-I (%)	Тор-5 (%)	
MoCo-v2 [Chen et al.] w. local views	Baseline	60.6	83.3	
	Ours	61.6 (+1.0)	84.2 (+0.9)	
	Baseline	65.2	85.6	
SwAV [Caron et al.]	Ours	67.3 (+2.1)	87.2 (+1.6)	
DINO [Caron et al.]	Baseline	66.2	86.4	
	Ours	68.3 (+2.1)	87.8 (+1.4)	
Supervised		71.9	90.3	

[Sandler et al.] MobileNetV2: Inverted Residuals and Linear Bottlenecks

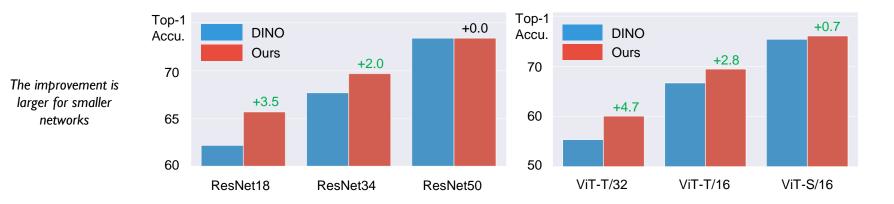
[Chen et al.] Improved Baselines with Momentum Contrastive Learning.

[Caron et al.] Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. NeurIPS 2020.

[Caron et al.] Emerging Properties in Self-Supervised Vision Transformers. ICCV 2021.

Improve representative visual backbones

Method	Linear evaluation on ImageNet-IK							
Methoa	Top-1 (%)							
	MobileNetV2 #Par.2.2M, GFLOPS 0.31	ResNet18 #Par.11.2M, GFLOPS 1.8	ResNet34 #Par.21.3M, GFLOPS 3.7	ResNet50 #Par.23.5M, GFLOPS 4.1	ViT-T/32 #Par. 5.5M, GFLOPS 0.31	ViT-T/16 #Par. 5.5M, GFLOPS 1.26	ViT-S/16 #Par.21.7M, GFLOPS 4.6	
Supervised	71.9	69.8	73.3	76.1	-	72.2	79.9	
DINO baseline	66.2	62.2	67.7	73.4	55.4	66.7	75.4	
DINO + Ours	68.3 (+ 2.1)	65.7 (+3.5)	69.7 (+2.0)	73.4 (+0.0)	60.1 (+4.7)	69.5 (+2.8)	76.1 (+0.7)	



Improve downstream applications

	Method	Mask R-CNN FF	PN Ix on COCO	Semi-supervised Learning on ImageNet-IK		
Backbone		Object Det.	Instance Seg.	1% label	10% label	
	Supervised	33.1	29.8	-	-	
MobileNetV2	DINO baseline	30.9	28.1	47.9	61.3	
	DINO + Ours	32.1 (+1.2)	29.1 (+1.0)	50.6 (+2.7)	63.5 (+2.2)	
ResNet18	Supervised	34.5	31.6	-	-	
	DINO baseline	32.7	30.6	44.5	59.2	
	DINO + Ours	34.1 (+1.4)	31.8 (+1.2)	49.8 (+5.3)	63.0 (+3.8)	
ResNet34	Supervised	38.7	35.0	-	-	
	DINO baseline	37.6	34.6	52.4	65.4	
	DINO + Ours	38.6 (+1.0)	35.5 (+0.9)	55.2 (+2.8)	67.2 (+1.8)	

Compare to SOTA, all with Knowledge Distillation

	Linear evaluation on ImageNet-IK						
Method	MobileNetV2		ResNet18		ResN	ResNet34	
	Top-I	Top-5	Top-I	Top-5	Top-I	Top-5	
Supervised	71.9	90.3	69.8	89.1	73.3	91.4	
CompRess [Koohpayegani et al.]	65.8	-	62.6	-	-	-	
SimReg [Navaneet et al.]	69.1	-	65.I	-	-	-	
SEED [Fang et al.]	-	-	63.0	84.9	65.7	86.8	
DisCo [Xu et al.]	-	-	65.2	86.8	67.6	88.6	
BINGO [Gao et al.]	-	-	65.5	87.0	68.9	89.0	
Ours	68.8	87.8	66.8	87.3	70.8	90.0	

[Koohpayegani et al.] CompRess: Self-Supervised Learning by Compressing Representations. NeurIPS 2020.

[Navaneet et al.] SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation. BMVC 2021.

[Fang et al.] SEED: Self-supervised Distillation for Visual Representation. ICLR 2021.

[Xu et al.] Bag of Instances Aggregation Boosts Self-supervised Distillation. ICLR 2022.

[Gao et al.] DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning. ECCV 2022.

Thank you!

https://github.com/saic-fi/SSLight

